XXXIV. 2, 199-205, 1981

VAK 631.417.2.632.125

ВЛИЯНИЕ ДЛИТЕЛЬНОГО АНТРОПОГЕННОГО ВОЗДЕЙСТВИЯ НА РАСТИТЕЛЬНОСТЬ И ОРГАНИЧЕСКОЕ ВЕЩЕСТВО ЭРОДИРОВАННЫХ КАШТАНОВЫХ ПОЧВ

э ф. ШУР-БАГДАСАРЯН, Е Н. БАДАЛЯН

Длительные приемы воздействия—интенсивный выпас, отдых и применение удобрений—вызвали коренные сдвиги в травянистой растительности и свойствах среднеэролированной каштаповой почвы. В результате 20-летнего применения полного минерального удобрения, наряду с резким увеличением фитомассы и изменением условий произрастания, содержание гуминовых и фульвокислот повысилось в 3 раза по сравнению с аналогичными показателями почвы интенсивно выпасаемого пастбища. В составе гумуса увеличилась доля наименее зрелых представителей гуминовых кислот.

Ключевые слова: почвы эродировинные каштановые, антропогенное воздействие, органическое вещество.

Направленность почвообразовательных процессов и механизм формирования плодородия эродированных почв при длительном антропотенном воздействии изучены неполно. Как указывает Ковда [2], систематические и длительные воздействия, постоянно накапливаясь, могут не только привести к скачкообразным изменениям качественного состава почвы, но и создавать условия для перехода одного типа в другой. Известно также, что почва является вечно развивающимся телом, то прогрессирующим, то регрессирующим.

В задачу паших исследований входило, с одной стороны, установление степени отрицательного действия интенсивного выпаса, а с другой—выяснение влияния длительного отдыха и применения удобрений на фитомассу, физико-химические свойства среднеэродированной каштановой почвы, ее ферментативную активность и особенно на содержание и фракционно-групповой состав гумуса, в связи с тем, что последний оказывает многостороннее влияние на почву и является не только показателем плодеродия, но и главным условием ее противоэрозионной устойчивости [5].

Материал и методика. Исследования по изменению видового состава и структуры травяниетой растительности на фоне систематического выпаса, а также при длительном отдыхе и применении удобрений проводили в течение 20 лет (1960—1979 гг.) на сильновыбитом пастбище среднеэродированной каштановой почвы. Для этого ежегодно вырезали дершину размером 50×50 см в 4-кратной повторности и после ее расчленения определяли фитомассу каждого вида в отдельности. Ежегодно изучали полевую влагоемкость весовым методом. В конце опыта определяли активность инвертазы, фосфатазы, уреазы и каталазы методом Галстяна [1]. Содержание гумуса и валового азота определяли общепринятыми методами [4], фракционно-групповои состав гумуса—по Кононовой и Бельчиковой [3].

Результаты и обсуждение. Крайне изреженная травянистая растительность на фоне систематического выпаса представлена в основном однолетними и многолетними видами разнотравья и однолетними злаками. Многолетние злаки встречаются единичными слаборазвитыми особями [7].

На фоне длительного отдыха наблюдается заметное увеличение многодетних злаков и разнотравья [8]. Однако целостный дерновый покров не восстанавливается.

Внесение в почву недостающих элементов питания растений в сравнительно короткий промежуток времени способствует резкому повышению жизненности дернообразующих злаков. Так, при 2-летнем внесении $N_{60}P_{60}K_{60}$ содержание злаков было в 2,3 и 7,9 раза больше, чем на фоне 2-летнего отдыха и выпаса; при 4-летнем внесении удобрений продуктивность их была в 3 раза больше, чем при 2-летнем внесении. С увеличением продолжительности внесения удобрений в травостое преобладают многолетние злаки, однажо в зависимости от количества осадков по отдельным годам наблюдаются довольно большие колебания в их продуктивности.

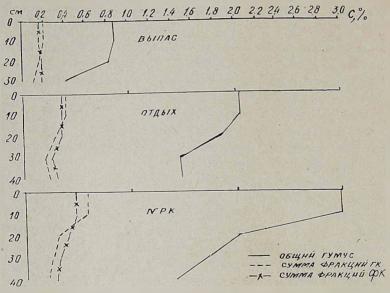


Рис. Изменение содержания гумуса и гумусовых кислот в эродированной каштановой почве под влиянием выпаса, отдыха и урожая.

На фоне длительного применения минеральных удобрений масса надземных и подземных частей злаков соответственно в 27 и 48 раз больше, чем на фоне выпаса (табл. 1).

В травостое под воздействием длительного применения удобрений принимают участие сравнительно влаголюбивые травы, такие как ежа сборная, тимофеевка степная, не встречающиеся при систематическом выпасе [9].

Созданный гуртой и высокий травостой на фоне длительного внесения удобрений, рассеивая ливневые потоки на тончайшие струйки, спо-

Вляние различных мер возденствия на фитомасст, эродированных каштановых дочв, ц/га

	Ві	ипас	Or	AUX .	$N_{a_0}P_{a_0}K_{a_0}$		
Группа растений	1.	11-	1	11	1	9 11	
Злаки Бобовые Разпотравье Всего	1,9 - 4 5 6,4	1,1 - 4.5 5.6	23.5 2.1 9.3 34.9	21.5 4,9 11,0 37,6	51,7 3,2 4,0 58,7	52,7 4.4 4.1 62,1	

^{• 1-} надземные части, 11-подземные части растений.

собствовал винтыванию влаги в почву и тем самым сокращению поверхностного стока в 6,3—22,4 раза, по сравнению с выпасаемой частью склопа, что в свою очередь способствовало повышению полевой влажности почвы [10]. На фоне длительного отдыха и внесения NPK₆₀ резко повышалась активность ферментов, что говорит о возможности перехода одного подтипа каштановой почвы в другой (табл. 2). *

Таблица 2 Активность ферментов в среднеэродированных каштановых почвах под влиянием различных мер воздействия (выпас, отдых, внесение NPK)

No s	образна	Глубина, см	Гумус,	Инвертаза, мг глюкозы	Фосфатлза, мг Р	Уреаза, мг NH ₃	Каталаза см ³ О ₂
19	выпас	0-10	1,60	13.5	9,2	1,02	1,8
20		10-20	1,49	10.7	9,4	0,77	1,2
21		20-30	0,72	10.7	7,1	0,51	0,7
25	отдых	0 - 10	3,96	31.8	9,2	1,28	3,2
26		10 - 20	3,24	20.3	5,1	1,02	1,6
27		20 - 30	2,68	14.6	3,9	0,51	1,1
27a		30 - 40	2,75	13.5	3,3	0,26	1,3
28 29 30 31	PK	$ \begin{array}{c c} 0 - 10 \\ 10 - 20 \\ 20 - 30 \\ 30 - 40 \end{array} $	5,15 3,50 2,88 2,42	44,5 30,0 18,3 15,4	11,3 5,9 4,0 3,0	2,04 -1,28 1,02 0,77	5,3 3,1 1,9 1,0

Длительные меры воздействия внесли определенные изменения в содержание и состав органического вещества эродированных каштановых почв. Так, длительный отдых и особенно многолетнее систематическое применение минеральных удобрений способствовали стабилизации содержания гумуса на высоком уровне. До постановки опыта содержание гумуса в верхнем слое почвы (0—20 см) составляло 1,92%. За 20 лет в том же слое почвы на фоне выпаса оно уменьшилось до 1,37—1,44% [4], а отдых и внессиие удобрений способствовали повышению его соответственно до 3,60 и 4,31% (рис.).

Аналогично изменились и запасы гумуса при разных мерах воздействия на почву (табл. 3).

Таблица 3 Изменение запасов гумуса в эродированной каштановой почве за 20 лет под влиянием выпаса, отдыха и удобрений (в слое 0—20 см)

Варианты		исходного	Увеличение от исход- ного запаса			
	т/ra	. %	т/га	%		
Выпас Отдых NPK ₆₀	11,8 — —	27,1 — —	— 38 2 54,6	87,2 124,7		

Вследствие систематического выпаса запасы гумуса в слое почвы 0—20 см за 20 лет уменьшились более чем на 1/4 часть от исходного количества органического вещества, составлявшего до начала опыта 43,8 т/га. Под воздействием отдыха и удобрений этот показатель повысился соответственно в 1,9 и 2,2 раза. В этих условиях увеличилось содержание азота в почве в 2,0—2,5 раза. Однако обогащенность гумуса азотом в сравнении с интенсивным выпасом несколько снизилась, о чем свидетельствует более широкое отношение С:N.

Разные способы длительного воздействия на почву вызвали изменения во всех группах и фракциях гумуса. При интенсивном выпасе процессы гумусообразования в почве ослаблены и доминируют гумины (61-63%) от общего С почвы) и гуминовые кислоты (21,7%), отношение C_{rs} : C_{dus} составляет 1,25. Гуминовые кислоты (ГК) почти полностью представлены связанной с Са фракцией. Содержание кислоторастворимых органических веществ и особенно ГК, свободных и связанных с подвижными R2O3, очень небольшое. В условиях длительного отдыха и особенно на фоне применения удобрений общее содержание ГК и находящихся с ними в полимерном комплексе (ФК) фульвокислот увеличилось соответственно в 2 и 3 раза. Однако доля ГК в углеродном балансе почв несколько понизилась (18,1 и 19,8% от С почвы), а отношение С сузилось (1,08 и 1,15). Очевидно, под влиянием длительных приемов улучшения создается более благоприятный гидротермический режим, при котором бнологические процессы в почве протекают более активно, чем на фоне интенсивного выпаса, в результате чего органические вещества минерализуются и переходят в легкорастворимые соединения типа ФК.

Отдых и удобрения способствуют заметному повышению содержания органических соединений, извлекаемых $0.1~{\rm H}~{\rm H}_2{\rm SO}_4$, при этом наблюдается миграция этих веществ вглубь почвы.

Особенно заметные изменения при разных способах воздействия отмечаются во фракционном составе ГК. На фонах отдыха и внесенных удобрений в 6—10 раз увеличилось абсолютное количество наиме-

Вариант	Глубина, см	Содержавие, % от массы почвы			Углерод, % от массы почвы. извлекаемый			С остат-	Crk	С фракций ГК, % от общего Стк			
		Copra	С орга-	N	C:N	0,1 н	Na ₄	Na ₄ P ₂ O ₁ +NaOH		ка почны	Сфк	спободные и спязанные	спязанные
		нический				H ₂ SO ₄	всего	ГК	ФК			K ³ O ³	e Ca
Выпас	$ \begin{array}{ c c c c } \hline 0 & -10 \\ 10 & -20 \\ 20 & -30 \end{array} $	0 92 0 87 0,72	1,60 1,51 1,24	0,110 0,089 0,085	8,3 9,8 8,4	0,05 0,04 0,01	0.36 0.32 0,27	0,20 0,14 0,10	0,16 0,18 0,17	0,56 0,55 0,45	1,25 0,78 0,59	0,02	0,12 0,13 0,10
Отдых	0-10 10-20 20-30 30-40	2,27 1,89 1,56 1,58	3,93 3,26 2,70 2,75	0,244 0,192 0,181 0,186	9,3 9,8 8,6 8,5	0,26 0,31 0,26 0,21	0,79 0,64 0,53 0,51	0,41 0,30 0,20 0,22	0,38 0,34 0,23 0,29	1,48 1,25 1,03 1,07	1,08 0,88 0,87 0,76	0,13 0,08 0,04 0,03	0,28 0,22 0,16 0,19
$N_{a0}P_{a0}K_{a0}$	$ \begin{array}{c c} 0 & 10 \\ 10 & 20 \\ 20 & 30 \\ 30 & 40 \end{array} $	2,98 2,01 1,71 1,41	5.15 3.48 2.95 2.44	0,309 0,190 0,187 0,172	9,6 10,5 9,1 8,2	0,21 0,20 0,22 0,22	1,10 0,72 0,58 0,47	0,59 0,32 0,25 0,19	0,51 0,40 0,33 0,28	1,88 1,29 1,13 0,94	1.15 0,80 0,76 0,68	0,19 0,08 0,03 0,02	0,40 0,24 0,22 0,17

нее зрелых бурых ГК—до 32% от суммы ГК при 10% на выпасе. Эти ГК представляют собой новообразованные гумусовые вещества, они высокоактивны и играют важную роль в почвенных процессах, в частности в структурообразовании [6]. При отдыхе и внесении удобрений наблюдается не только активное образование гумусовых веществ, но и прочное закрепление их минеральной частью почвы в виде соединений

негидролизуемого остатка.

В почве, подвергавшейся систематическому выпасу, ГК и ФК равномерно распределены в толще 0—30 см. При запрете выпаса и особенно при применении удобрений содержание этих веществ максимально в самом верхнем слое почвы. Однако прослеживается тенденция к увеличению количества гумусовых кислот и на большей глубине. Групповой состав гумуса сохраняет при этом черты, присущие в целом каштановым почвам—преобладание ГК над ФК в гумусовом горизонте. ФК, как более миграционноспособные соединения, с глубиной превалируют над ГК. При длительном применении минеральных удобрений на фоне запрета выпаса процессы превращения органического вещества, изменяя свойства почвы, очевидно, могут обусловить переход из одного подтипа (светло-каштанового) в другой (темно-каштановый).

Таким образом, в результате 20-летнего применения удобрений на среднеэродированных пастбищах в зоне каштановых почв резко повысились запасы фитомассы и органического вещества, а также содержание гумусовых кислот. При этом в составе гумуса увеличилось содержание наименее зрелых представителей гуминовых кислот по сравнению с аналогичными показателями на фоне интенсивного выпаса.

Институт почвоведения и агрохимии МСХ Армянской ССР

Поступило 6.ІХ 1980 г.

William and a serious frage to the

ԷՐՈԶԱՑՎԱԾ ՇԱԳԱՆԱԿԱԳՈՒՅՆ ՀՈՂԵՐՈՒՄ ԵՐԿԱՐԱՏԵՎ ԱՆՏՐՈՊՈԳԵՆ ԳՈՐԾՈՆՆԵՐԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ԲՈՒՍԱԾԱԾԿԻ ԵՎ ՕՐԳԱՆԱԿԱՆ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ՎՐԱ

է. Ֆ. ՇՈՒՐ-ԲԱՂԴԱՍԱՐՅԱՆ, Ե. Ն. ԲԱԳԱԼՅԱՆ

Երկարատև միջոցառումների ազդեցությունը՝ ինտենսիվ արածեցումը, արածեցման արգելակումը և պատարտացումը արմատային փոփոխություններ են առաջացնում բուսածածկի և միջին էրողացված շագանակագույն հողերի հատկությունների մեջ։ 20 տարվա լրիվ պատարտացման հետևանքով բազ-մամյա հացազգիների ներգետնյա և վերգետնյա մասերը համապատասիա-նաբար 27,0 և 48,0 անգամ շատ են, ջան սիստեմատիկ և ինտենսիվ արա-ծեցման ժամանակ։

Ֆիտոմասսայի ավելացման և աձման պայմանների փոփոխության հետևանքով հումինաթթուների և ֆուլվոթթուների պարունակությունը, ինտենսիվ արածեցվող արոտի համեմատությամբ ավելացել է 3 անգամ։

Հումուսի կազմում ավելացել է հումինաԹԹուների առավել քիչ հասուն ներկալացուցիչների քանակը։

THE INFLUENCE OF LONG-TERM ANTHROPOGENIC EFFECTS ON THE GRASS-COVER AND ORGANIC SUBSTANCE OF ERODED CHESTNUT SOILS

F. F. SHUR-BAGDASARIAN, E. N. BADALIAN

It has been established that the long-term application of mineral feitlizers considerably increases the phytomass of moderately eroded pastures, as well as the content of humus, nitrogen, humin and fulvic acids in the soil.

ЛИТЕРАТУРА

- 1. Галстян А. Ш. Тр НИИ почвоведения и агрохимии, вып. 8, Ереван, 1974.
- 2. Ковда В. А. Основы учения о почвах. Кн. 1, М., 1973.
- 3. Кононова М. М. Органическое вещество почвы. М., 1963.
- 4. Орлов Д. С., Гришина Л. А., Ерошичева Н. Л. Практикум по бнохимин гумуса. M., ,1969.
- 5. Орлов Д. С. Итоги пауки и техники. Серия почвоведения и агрохимии, 2, М., 1979.
- 6. Сучалкина М. П. Сб. Вопросы травопольной системы земледелия. М., 1953.
- 7. Шур-Багдасарян Э. Ф. Тр. НИИ почвоведения и агрохомии, выл. 7, 1973.
- 8 Шур-Багдасарян Э. Ф. Биолог. ж. Армении, 26, 10, 1973. 9. Шир-Багдасарян Э. Ф. Докт. дисс., Ереван, 1974.
- Ивир-Багдасарян Э. Ф. Биолог. ж. Арменин, 29, 4, 1976.