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Abstract – We report on experimental and theoretical study of temperature tuning of single pass quasi-
phase-matched second harmonic generation in a plane parallel  PPMgOLN (periodically poled  MgO 
doped LiNbO3) crystal in a green microchip laser.  Periodic oscillations of second harmonic power upon 
variation of the temperature are observed. The oscillation period (4.8°C – 8.4°C) is several times smaller 
than the temperature acceptance bandwidth (18.4°C – 32.1°C), and the period strongly correlates with the 
crystal length. Formula for temperature dependence of second harmonic power is derived, which takes 
into account multiple reflections of fundamental and second harmonic waves in the nonlinear crystal. 
Comparison of experimental and theoretical data allows us to conclude that the origin of the oscillations 
is the multiple beam Fabry-Perot interference in the plane parallel nonlinear crystal. 
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1. Introduction 

Second harmonic generation (SHG) is widely used for nonlinear frequency conversion of 

laser radiation in various configurations, which involve single-pass setup, resonator-enhanced 

SHG, and intracavity SHG [1]. 

N. Bloembergen and P. S. Pershan have treated single-pass SHG in a plane parallel 

nonlinear crystal in [2] where they gave the solutions to Maxwell’s equations in nonlinear 

dielectrics that satisfy the boundary conditions at a plane interface between linear and nonlinear 

medium.  

Multiple beam interference effects in second harmonic generation in a plane-parallel 

nonlinear crystal were investigated in [3-8].  

In [3] SHG in thin GaAs plate is investigated and rapid oscillations were found in the 

spectra, which are result of Fabry-Perot interference. SHG in wedged LiNbO3 plate versus 

thickness of the plate was investigated in [4] and oscillations are found in the dependence of SH 

power versus thickness of the sample. This was the first observation of multiple beam 

interference in optical second harmonic generation. 

When measuring optical coefficients, e.g. in Maker fringe technique, interference effects 

in SHG are very important. In [5, 6] authors took into account interference effects in SHG for 

more precise determination of optical coefficients. In [5], authors report on a method for 

measuring optical coefficients of thin semiconductor films, when Maker fringe technique is not 
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applicable. In [6] authors have presented a new formulation of Maker fringes in plane-parallel 

nonlinear crystals. 

To achieve an accuracy of a few percent, effects of Fabry-Perot interference are taken 

into account in Maker fringe experiments [7]. In [8] authors report about development of 

theoretical expression for Maker fringe. A new formulation for Maker fringes has been given, 

using boundary conditions, anisotropy of the crystal, dispersion of the refractive index and 

multiple reflections of the fundamental and second harmonic waves in the nonlinear crystal. 

In this paper we report on experimental and theoretical study of temperature tuning of 

single pass quasi-phase matched SHG in plane parallel nonlinear crystal. 

The motivation for conducting this study is development of compact microchip laser with 

intracavity frequency doubling [9]. Microchip lasers are of interest and recent achievements are 

presented in [10-13].During temperature tuning test of the microchip lasers it was observed that 

some lasers show unexpected periodic oscillations of output power upon variation of the 

temperature. These oscillations hamper the temperature tuning of the microchip lasers, thus we 

need to understand the origin of oscillation to prevent it. For this reason we have investigated 

temperature dependence of second harmonic power for a nominally single-pass SHG in the 

nonlinear crystal similar to the crystal used in the microchip laser.  

The outline of the paper is as follows. In Section 2, experimental work is described, 

including measurements of temperature dependence of output intensity of the microchip laser 

and temperature dependence of single pass SHG intensity in plane parallel nonlinear crystal. In 

the section 3, theoretical calculations are presented and compared to the experimental data. 

Section 4 and 5 are conclusion and acknowledgments respectively. Finally, paper ends with the 

appendix, where detailed solution of the wave equation for the second harmonic field is 

presented, which includes Fabry-Perot interference effects. 

 

2. Experimental 

2.1. Microchip laser output power versus temperature 

Microchip lasers with intracavity frequency doubling are DPSS (diode pump solid state) 

lasers. Cavity of such a laser consist of two planar components: Gain crystal (Nd3+:YVO4), and 

nonlinear crystal (periodically polled MgO:LiNbO3 – PPMgOLN), which are joined by optical 

contacting technique. The input face of the gain crystal is coated for high transmission (HT) at 

pump wavelength (808 nm) and high reflection (HR) at fundamental (1064 nm) and second 

harmonic (532 nm) wavelengths. The output face of the nonlinear crystal is coated for HT at 532 
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nm and HR at 1064 nm. To convert 1064 nm to 532 nm, quasi-phase matched second harmonic 

generation is used. To have maximum efficiency, temperature of the laser cavity should be fixed 

at optimal quasi-phase matching temperature. 

Experimental setup, which is used to measure the temperature dependence of output 

power of the microchip laser, is depicted in Fig.1. Temperatures of the pump laser diode (LD) 

and microchip (MC) are controlled with the TEC1 and TEC2. Microchip laser is pumped with 

808 nm wavelength and output power at 532 nm was registered. To reduce wavelength 

fluctuations, temperature of the LD is fixed during the experiment with the precision of 0.1 C . 

Temperature of the MC is changed in the range of 25 70 C  . 

Fig.1. Schematic drawing of the experiment of measuring temperature dependence of microchip 
output power. LD – laser diode, GL – GRIN lens, MC – microchip, TEC1 – Thermo-electro 
cooler for the LD, TEC2 – Thermo-electro cooler for the MC, BS – beam splitter, PD – 
Photodetector, TC – Temperature controller, PC – Computer. 

 

Results of the experiments for two different microchip lasers are shown in Fig.2. The first 

curve is relatively flat (Fig.2a), while the second one has clearly pronounced periodic oscillations 

(Fig.2b). The decline of the output power over the range of 25 55 C   is due to temperature 

acceptance bandwidth T  in quasi-phase matched second harmonic generation, which is 18.4 C  

in case of plane wave approximation and 1.5 mm length of nonlinear crystal. 
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Fig.2. Microchip output power versus temperature for two different MC lasers. a) Relatively flat 
curve, b) Clearly pronounced periodic oscillations.

 

Measuring reflection from the contacted interface between gain crystal and nonlinear 

crystal for these two microchip lasers, it is found that reflection from the interface for second 

microchip is higher than for the first one [14]. 

These results were partially reported in [15], where it was assumed that these oscillations 

come from multiple reflections of fundamental and second harmonic beams in nonlinear crystal. 

To test this assumption single pass SHG experiments in the nonlinear crystal identical to those 

used in the microchip laser are conducted, and detailed calculations of second harmonic intensity 

in a nonlinear crystal is presented, which takes into account multiple beam interference of 

fundamental and second harmonic waves. 

 

2.2. Single pass SHG in plane parallel nonlinear crystal 

Experimental setup for measuring temperature dependence of SH intensity in single pass 

SHG is shown in Fig.3. 1064nm CW, single longitudinal mode laser is used as a pump. Pump 

beam is focused in the nonlinear crystal (PPMgOLN), and output power is registered by a 

photodiode. Polarization of the pump and SH waves are parallel to the c-axis of the nonlinear 

crystal. Temperature of the PPMgOLN is controlled by a thermo-electro cooler. 
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Fig.3. Schematic drawing of the experiment of measuring temperature dependence of single pass 
SHG. L – lens, NC – nonlinear crystal, TEC – Thermo-electro cooler, BS – beam splitter, PD – 
Photodetector, TC – Temperature controller, PC – Computer. 

 

The input face of the PPMgOLN is polished, while the output face is coated for HT at 

532 nm and HR at 1064 nm. Experiments are done on three crystals with different thickness. In 

Fig.4 results of the experiments is plotted with markers. It can be seen that observed oscillation 

periods O  correlate with the length of the PPMgOLN. Oscillations periods are equal to 

 5.1 0.5 CO     for l = 1.5 mm,  6.3 0.5 CO     for l = 1.17 mm and  8.5 0.5 CO     for 

l = 0.86 mm. This allows us to suppose that oscillations are result of interference between 

multiply reflected waves in NC. 

Fig.4. Observed (markers) and calculated (solid line) intensity versus temperature for single pass 
SHG. a)  1.5 , 5.1 0.5 , 4.8O Cl mm C C       , b)  1.17 , 6.3 0.5 , 6.1O Cl mm C C       , 

c)  0.86 , 8.5 0.5 , 8.4O Cl mm C C        
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To test this hypothesis, in the experiment with the l = 1.5 mm length crystal, pump beam 

incidence angle is changed. Instead of perpendicular incidence, now incidence angle is equal to 

5o. This tilt angle provides poor overlap between multiple reflections, so they are not able to 

interfere. In the second experiment, the input face of the PPMgOLN is coated for HT at 1064 nm 

and HR at 532 nm. This coating eliminates multiple reflections. Results of these experiments are 

shown in Fig.5 (markers).  

Fig.5. SH intensity versus temperature for 1.5mml   LiNbO3. Oblique incidence (○ – observed) 
and double side coating ( – observed, solid line – calculated). 

 

One can see that if multiple reflections are absent or do not interfere, temperature curve 

of the SH intensity is smooth (without oscillations). In case of oblique incidence, the curve is 

shifted to the smaller temperatures. This is due to change of effective domain period 

* / cos   , where   is the domain period and   is the angle between beam and normal of 

the domain walls inside the nonlinear crystal. Optimal phase matching temperature (peak of the 

curve) can be found solving 1 2( ) 2 ( ) ( ) cos( ) / ( ) 0k T k T k T T       (wave vector mismatch 

is equal to zero, see Appendix 1 for details) equation for T  in case of 15 / 2.27n     , where 

1n  is the refractive index of the nonlinear crystal at pump wavelength. Solution of the equation is 

0 37.9 CT   , which is observed in the experiment. 
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3. Theory 

To understand the reason of oscillations, let us suppose a pump wave is shone normally 

onto the nonlinear crystal’s surface. Pump wave polarization is parallel to the c-axis of the 

nonlinear crystal. We need to solve wave equation for second harmonic field [16] 

 
2 22
2 2

2 2 22 2 2

4
( ) ( ) ( )NL

d
E z E z P z

dz c c

    , (1) 

where 2 ( )E z  is the amplitude of SH wave inside the NC, 2  is the dielectric susceptibility of 

crystal, 2  is the frequency of the second harmonic wave, c  is the speed of light. 2
14NL effP d E  

is the nonlinear polarization, where effd  is an effective nonlinear susceptibility. 

As it was mentioned above, polarizations of the pump and SH waves are parallel to the c-

axis of the crystal, so both waves have extraordinary polarization with respect to the crystal 

(type-0 SHG). 

Detailed calculations are not presented in this paragraph, one can find them in the 

Appendix 1, where detailed solution of the wave equation for the second harmonic wave is 

presented. Here three major approximations will be discussed, which are used during solution of 

the wave equation.  

First, monochromatic plane wave approximation. In the experiments Nd3+:YVO4 CW 

single longitudinal mode laser is used as a pump, which can be considered monochromatic. 

Positive lens is used to focus pump wave in the nonlinear crystal. Pump beam divergence full 

angle is 4.2 mrad    and output beam diameter is 0 0.34 mm   , focusing length of the lens is 

25 mmf    and it is located 540 mmd    far from the laser source. Beam diameter at the focus 

can be estimated as 0 02 4 / ( ) 28.6μmf n d        . Rayleigh length is equal to 

2
0 1 / 1328μmRZ n    . It is known, that at the focusing point wave front of the Gaussian 

beam is a plane. As long as Rayleigh length is comparable with the length of the crystal, wave in 

the crystal can be considered a plane wave. 

Second, undepleted pump approximation. In the experiments, pump power is 100 mW. 

With this pump power maximal observed SH power was about 100 µW, which is negligibly 

small compared to the pump. Thus, pump wave can be considered to be undepleted during the 

propagation trough the nonlinear crystal. 

It is usually allowed to neglect second order derivative of the amplitude 2 ( )A z . It is the 

third approximation, called slowly-varying amplitude approximation. It requires fractional 
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change of the SH wave amplitude on the distance of order of optical wavelength be much 

smaller than unity 2 2
2 2 2/ ( / )d A dz k dA dz  . 

Solution of the wave equation (1) will give us the following expression for the amplitude 

of the SH wave (Eq.(A12))  

 
   

2

2 2'2 2
1 1 1

2 2' '
2 1 2

( ) sinc
2 (1 r r e )

kl kl
i i

ik l

A e r A ekl
A l Cl

ik

 
 


     

.  (2) 

Output intensity is proportional to the square of the absolute value of it. It is expressed in 

a compact form 

  24 2
2 0 1 2sinc

2

kl
I E FP FP

   
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 , (3) 

where  
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are the Airy functions describing multiple beam interference, with the following finesse 

coefficients 

 
   

' '
1 2 1 2

1 22 2' '
1 2 1 2

4 4
,
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F F

r r r r
 

 
 . (5) 

It can be seen from the Eq.2 that SH intensity is modulated with two oscillating functions. 

Quasi-phase matching condition depends on the temperature through the wave vector mismatch 

1 22 (T) k ( ) 1/ ( )k k T T     , where wave vectors of the fundamental and SH waves 

1 1 1( ) 2 (T) /k T n   and 2 2 2( ) 2 (T) /k T n   depends on the temperature through the refractive 

index (thermo-optic effect / 0dn dT  ), and domain period ( )T  depends on the temperature 

because of the thermal expansion. Besides, temperature variation due to thermal expansion and 

thermo-optic effect leads to the variation of the optical length of the crystal, which affect Airy 

functions. 

In Fig.4 calculated temperature dependence of SH intensity for 1.5 mml   , 1.17 mml    

and 0.86 mml    crystals are presented with solid lines. It can be seen that observed and 

calculated oscillations periods are in an agreement. There are difference between calculated and 

observed oscillations amplitudes. For all three samples, observed amplitudes ale lower that 

calculated ones. The reason can be in the plane wave approximation and perpendicular 

incidence. In the experiment, pump wave is not exactly plane wave and not exactly 
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perpendicular to the nonlinear crystal surface. These factors lowers Fabry-Perot etalon finesse 

and leads to the minimization of the oscillations amplitude. 

In Fig.5 calculated temperature dependence of SH intensity for 1.5 mml    length crystal 

with double side coating is presented with solid line. As it is observed in the experiment, curve is 

Sinc (Sine cardinal) function, without any Fabry-Perot oscillations. 

4. Summary 

In summary, it is shown that oscillations in the temperature dependence of single pass 

SHG are result of the multiple beam interference in the nonlinear crystal. Formula for 

temperature dependence of single pass SHG intensity is derived. Formula includes multiple 

beam interference for fundamental and for second harmonic waves. Period of oscillations is 

inversely proportional to the length of the crystal. Theoretically calculated oscillations periods 

for PPLN with different thickness are in an agreement with the observed values. It is supposed, 

that origin of oscillations in the temperature dependence of the microchip output power is in the 

multiple beam interference in the resonator of the microchip laser, and studies are in progress. 

Appendix 1 

In this appendix, detailed solution of the wave equation for second harmonic wave in 

nonlinear crystal is presented.  

Suppose amplitude of the incidence wave is equal to 0E  and it is a plane wave. Due to 

multiple reflections from the boundaries in the NC there will be two waves, propagating in the 

opposite directions 

 1 1 1 1 1

1

( ) 2 ( )1 0
1 1 0 1 2 2

0 1 2

( )
1

i k z t ik l i k z t
ik l

j

it E
E z it E e r r e e

r r e
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
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1
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1

i k z t ik l i k z t
ik l

j

it r E
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r r e
 


   



 
 . (A2) 

These are amplitudes of the waves in the NC, ‘+’and ‘– ‘ indicate forward (right) and 

backward (left) propagating waves, 1 2,r r  and 1 2,t t  are amplitude reflectance and transmittance 

coefficients of the first and second mirrors respectively. 1k  and 1  are the wave vector and 

frequency of the incidence wave in the NC, l  is the length of the NC, z  is a coordinate in the 

propagation direction and t  is the time. 

In the every point inside NC fundamental wave amplitude is a sum of 

1 1(k z )
1 1( ) A i tE z e    and 1 1( k z )

1 1( ) A i tE z e    , where  12
1 1 0 1 2A / 1 ik lit E r r e    and 

 12
1 1 2 0 1 2A / 1 ik lit r E r r e   . So, nonlinear polarization in the wave equation (1) will be equal to 



Kerobyan et al. || Armenian Journal of Physics, 2014, vol. 7, issue 4 

210 
 

    1 1
2 22 2

1 1 1 14 2ik z ik z
NL effP d A e A e A A      . Here 12i te   and 2i te   terms are omitted, because 

2 12   and they shrink each other in the wave equation. Because pump wave is a sum of 

opposite propagating waves, it is reasonable to look for a solution in the form of sum of opposite 

propagating waves 

 2 2
2 2 2( ) A ( ) A ( )ik z ik zE z z e z e    . (A3) 

Substituting Eq.A5 and Eq.A3 into the Eq.A4 will give 
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 
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. (A4) 

With the slowly-varying amplitude approximation 
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2 2 2 2
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k k
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   

    (A5) 

and taking into account that 2 2 2
2 2 2 /k c   wave equation Eq.A6 will become 

     2 2 1 1
2 22 22 2
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Where 2 2
28 /effC d c  . Denoting 1 22k k k    will give 
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 . (A7) 

Right part of the equation does not depend on the z  and 2ik ze  and 2ik ze  functions linearly 

independent in case of 2 0k  , thus, two terms in the left side should be constants (do not depend 

on z ). Let’s denote them 1B  and 2B , where 1 2 1 12B B CA A   . Then, instead of Eq.A9, there 

will become a couple of equations 
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After integration of this equations in the limits from 0 to l   
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After some simplifications  
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Note that right sights of the Eq.A12 are negligible due to the 

2 2 2sinc(k l/ 2) sin(k l/ 2) / (k l/ 2)  term, and hereafter, right parts will be omitted. 

Solution of the equation should satisfy following boundary conditions 
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which are actually reflection laws at the boundaries of the nonlinear crystal. '
1r  and '

2r  are 

amplitude reflection coefficients of the first and second edges for SH wave. 

Solution of the equations for the forward propagating wave near the output edge in the 

crystal ( 2 ( )A l ) is given by the following formula 
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 . (A12) 

Intensity of the SH output power is proportional to the square of the absolute value of the 

2 ( )A l  multiplied with the transmission coefficient of the output surface. 

 
2'

2 2 2 ( )I t A l  . (A13) 

In case of quasi-phase matched SHG k  is equal to 

 1 2

1
2k k k   


 , (A14)  

where   is the period of domain structure in the periodic polled nonlinear crystal. 
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