2 U 3 U U S U 5 P Ч В 5 U U P U 5 U U U U 5 2 U 5 P В U В В И Б И О Л О Г И Ч Е С К И Й ЖУРНАЛ АРМЕНИИ

XXXIV, 10, 1037-1041, 1981

УДК 576.8:663.252.41

БИОСИНТЕТИЧЕСКАЯ АКТИВНОСТЬ ИСХОДНЫХ И МУТАНТОВ ДРОЖЖЕЙ ПРИ БРОЖЕНИИ ВИНОГРАДНОГО СУСЛА ПО КРАСНОМУ СПОСОБУ

Б. П. АВАКЯН, Н. А. ТЕР-БАЛЯН

При применении химических и физических мутагенов получены новые дрожжи, использование которых позволяет получать более интенсивно окрашенные красные вина.

Ключевые слова: виноградное сугло, дрожжи, мутагены.

Большая часть применяемых в виноделии штаммов дрожжей получена в результате отбора из производства и их селекции. Во всех случаях отобранные таким способом культуры дрожжей отличаются от первичных. Применение мутагенов позволяет изменять некоторые свойства микроорганизмов, что видно при сравнении данных о морфологии, физиологии и биосинтетической активности [1—3].

Известно, что концентрации веществ, продуцируемых различными штаммами дрожжей, значительно отличаются. Установлено также влияние штамма дрожжей на образование веществ, создающих аромат вина [4]. В зависимости от физиологического состояния клеток дрожжей и условий, в которых они культивировались, меняется и активность ферментов их клеток При применении пектолитических ферментных препаратов увеличивается выход сусла до 2—15%, возрастает и скорость фильтрации сока. Вино, полученное из этого сока, созревает значительно быстрее [5].

При переработке винограда на красные вина важным является качество сырья, прежде всего содержание в нем красящих и дубильных веществ [6].

Целью настоящей работы являлось определение биосинтетической активности исходных и мутантов дрожжей при брожении виноградного сусла по красному способу и выделение культур для применения в производстве красных столовых вин.

 Mar -риал и методика. Для исследований были взяты производственные штаммы дрожжей Saccharomyces chodati K-212, Sacch. vini Агавнатун-2 и ранее полученные мутантные формы.

Питательные среды: солодовое сусло 7° Бал+2% агара; виноградное сусло сахаристостью 18—25%, виноградное сусло красного винограда с твердыми частями его (кожица, косточка и обрывки мякоти). Для брожения виноградного сусла на мезге были поставлены опыты, в которых 60 кг винограда сорта Кахет (содержание сахара 20,2%) было разделено на 12 частей. После отделения гребней ягоды были раздроблены и помещены в стеклянные сосуды емкостью по 10 литров каждый. В эту массу

вносили сернистый апгидрид в пределах 200 мг/л, после чего в каждый вариант вассили 2% дрожжей требуемого штамма. Брожение осуществляли при температуре 22—28°.

На производстве (Даларский, Егвардский винзаводы) брожение проведено в карасах смкостью 50—70 дал, а также в резервуарах и чанах смкостью 600—1500 дал. Опыты проводили с использованием винограда сортов Кахет и Арени. Красящие вещества определяли по методике Вильямса и Тарановой [7].

Для определения основных компонентов вина использовали общепринятые методы [8]. Определение β-фруктофуранозидазы проводили по методике Авакянца [4]. Для определения пектолитической активности ферментов использовали йодометрический

метод ВНТТПБП в уточненном варианте.

Результаты и обсуждение. В результате проведенных работ нами получены интенсивно окрашенные, высококачественные красные вина. Опытные образцы имели более высокое содержание полифенолов, благодаря специфическим особенностям мутантной культуры дрожжей. В связи с этим, наряду с общими показателями, наше внимание было обращено на количественное и качественное изучение окраски с целью регулирования протекающих процессов и получения интенсивно окрашенных, обладающих плодовым ароматом и устойчивой окраской вин.

Дапные апализов полученных виноматериалов обобщены в табл. 1, из которой видно, что наибольшее количество спирта образовалось в виноматериале, полученном с применением штамма М-3-75. Менее эффективным в этом отношении оказался штамм К-212.. По данным таб-

Таблица 1 Химический состав и дегустационная оценка красных виноматериалов, полученных с использованием различных дрожжей

полученных с непользованием различных дрожжен											
Наименование культур	Титруемая кис- логность, г/л	Альдегиды, мі/л	Ацетали, мг/л	Спирт, об. %	Остаточный са- хар, г/д	Содержание кра- сящих веществ, мг/л	Содержание ду- бильтых и крася цих веществ, г/л	Дегустационная оценка, бала			
М—3/19—16—76 (М—3—75) М—3/19—16 М—3/19 М—3	4,12 4,12 4,12 4,12	14,0 16,2 41,8 20,2	14,1 22,6 15.3 16,5	11,7 9,0 11,1 10,5	0,55 1,0 0,65 0,80	380 300 300 220	1,289 1,030 1,206 0,416	8,4 7,4 8,1 8,1			
Sacch. chodatl K—212 A-2/17—10—249 A-2/17—10 A-2/17 Исходная культура	4.12 4,12 4,12 4,12	53.2 31,2 30,8 38,7	33,5 15,4 18,8 28,3	6,4 11,1 11,1 11,1	1,43 0,65 0,65 0,65	220 220 190 270	1.040 1.064 1.040 1.064	7,7 8,0 8,1 8,0			
Sacch. vini Агавнатун—2 A—2/10 A—2/10—5 A—2/10—5—444	4,12 4,12 4,12 4,12 4,12	34.3 14.0 33,0 29,9	16,5 12,3 12,9 12,3	9,0 9,0 7,0 10,2	1,0 1,0 1,33 0,80	220 300 190 270	0,874 0,915 0,125 0,873	7,8 7,7 7,1 7,9			

лицы, существует разница и в накоплении альдегидов и ацеталей. Больше всего альдегидов накопилось при использовании штамма K-212.

. . . .

Содержание ацеталей было высоким в пробах со штаммами A-2/17 и M-3/19-16. Содержание красящих веществ выше в виноматериале, полученном на штамме M-3-75. В остальных вариантах оно находилось в пределах 190—300 мг/л. Штамм M-3-75 способствовал также накоплению наибольшего количества дубильных веществ.

Что касается дегустационной оценки, то высший балл—8,4—отмечен при применении дрожжей М-3-75, самый низкий балл—7, 1—при использовании штамма A-2/10-5.

Опыты показали, что активность β-фруктофуранозидазы в виноматериале первого дня брожения при использовании исходного штамма K-212 составляла 0,7631, а при применении дрожжей M-3-75 она была несколько выше (1,0006 микромоль л. мин). На третий день брожения активность ферментов несколько возрастала, а на восьмой достигала в контрольном варианте 0,9589, а в опыте—1,5493 микромоль л. мин.

Наряду с этим, изучалась пектолитическая активность ферментов в виноматериалах в различные сроки спиртового брожения. Выяснено, что после первого дня брожения этот показатель составлял в контрольной пробе (на исходном штамме К-212) 142,9, в опытной—280,1 пек. един./100 мл. Через трое суток пектолитическая активность в опытной пробе возросла на 78,2, в контрольной—40,5 пек. един./100 мл, а через 10 дней брожения в молодом красном вине она составила 431,6 в опыте и 273,1 в контроле.

Учитывая имеющиеся в специальной литературе данные об увеличении выхода сусла и других соединений в результате действия пектолитических ферментных препаратов, нами был поставлен специальный опыт по уточнению возможных изменений этих компонентов при применении исследуемых культур. Применение дрожжей штамма М-3-75, по сравнению с исходным, увеличило выход сусла из сорта Кахет на Даларском винзаводе до 6 —9%. Использование этих дрожжей позволило увеличить также содержание дубильных и красящих веществ.

В результате лабораторных опытов и полупромышленных испытаний из вновь полученных линий был отобран мутант Sacch. chodati M-3-75 как паиболее перспективный для получения красных вин. В подтверждение этого на Даларском винзаводе, Шаумянском и Мхчянском винпунктах этого винзавода, а также на Егвардском винзаводе в крупных резервуарах было осуществлено испытание штамма. Особое внимание уделялось выяснению степени накопления красящих веществ.

Как видно из табл. 2, в виноматериале, полученном на Мхчянском винзаводе, сумма дубильных и красящих веществ в контроле на 0,250 г/л меньше, чем в вине опытного варианта. Аналогичные данные получены и на пробах Егвардского винзавода. В образцах Даларского винзавода на 11 и 18-й дни брожения в контроле содержание суммы дубильных и красящих веществ было меньше, чем в опыте, однако на 26-й день в контроле наблюдалось снижение указанных соединений.

Таким образом, при брожении виноградного сусла по красному способу мутантные формы дрожжей отличаются от исходных по способ-

Общий химический состав и сумма дубильных и красящих веществ в виноматериалах из различных заводов

		Титруемая кнелотность, г/л		ожание учнх от, г/л	Сумма дубильных и красящих ве- ществ, г/л			
Название предприятий	Saccharomyces chodati							
и варианты опытов	шт. К-212 (исходный)	шт. М-3-75 (опытный)	шт. К-212 (исходный)	шт. М-3-75 (опытный)	шт. К-212. (конгроль)	шт. М-3-75 (опытиый)		
Мхчанский в/п 3-й день брожения	6,4	6,7	0,4	0,24	0,582	0,83		
Егвардский в/з брожение после суток	8,0	9,7	0,24	0,24	0,374	0,500		
Егвардский в/з 2-й день брожения	8,0	9,7	0,24	0,36	0,749	0,816		
Егвардский в/з 3-й день брожения	8,2	6,7	0,24	0,30	1,456	1,474		
Даларский в _/ з Шаумянский в/п 4-й день брожения	9,7	9,7	0,18	0,24	1,630	1,750		
Даларский в/з Шаумянский в/п 11-й день брожения	7,5	7,5	0,18	0,24	1,714	1,082		
Даларский в/з Шаумянский в/п 18-й день брожения	8.2	0,2	0.24	0,24	2,038	1,789		
Даларский в/з Шаумянский в/п 26-й день брожения	8,2	8,2	0.24	0,24	1,456	1,580		

ности увеличивать красящие и дубильные вещества и повышенной активностью пектолитических ферментов и β-фруктофуранозидазы в бродящей среде.

Институт виноградарства, виноделия и плодоводства МСХ Армянской ССР

Поступило 22.V 1981 г.

ԵԼԱԿԵՏԱՅԻՆ ԵՎ ՄՈՒՏԱՆՏ ՇԱՔԱՐԱՍՆԿԵՐԻ ԲԻՈՍԻՆԹԵՏԻԿ ԱԿՏԻՎՈՒԹՅՈՒՆԸ ԽԱՂՈՂԱՀՅՈՒԹԻ ԳԻՆԵԳՈՐԾԱԿԱՆ ԿԱՐՄԻՐ ԵՂԱՆԱԿՈՎ ԽՄՈՐՄԱՆ ԴԵՊՔՈՒՄ

F. Պ. ԱՎԱԳՅԱՆ, Ն. Հ. Sbr-Pulsub

Խաղողահյունի գինեգործական կարմիր եղանակով խմորման ժամանակ օդտագործվել են ելակետային և մուտագենների կիրառմամբ ստացված մի մի ջանի մուտանա շաջարասնկեր։ Պատրաստված գինիները տարբերվում են ներկանյուների, դաբաղանյուների և այլ ջիմիական բաղադրունյամբ։ Մուտանտ շաջարասնկերով խմորվող ջաղցուի մեջ նկատվում է ֆրուկտոֆուրա-նոզիդազա և պեկտինազա ֆերմենտների ակտիվունյան բարձրացում, որը և նպաստում է ներկանյուների դաբաղանյուների և գինու ելջի ավելացմանը։ Հաստատվել է, որ արտադրունյան մեջ կիրառելով Մ—3—75 շտամը, գինու ներկանյուների քանակունյունը, ստուգիչի համեմատունյամբ, ավելանում է 10—15%-ով։ Միաժամանակ 6—9%-ով ավելանում է ջաղցուի ելջը։

BIOSYNTHETIC ACTIVITY OF INITIAL AND MUTANT YEAST CULTURES FOR THE FERMENTATION OF GRAPE MUST BY THE RED METHOD

B. P. AVAKIAN, N. H. TER-BALIAN

New yeast has been obtained under the influence of chemical and physical mutagenes. Its application provides more intensive red coloured wines.

ЛИТЕРАТУРА

- 1. Алиханян С. И. Селекция промышленных микроорганизмов. М., 1968.
- 2. Алиханян С. И. Биолог. ж. Армении, 23, 4, 1970.
- 3. Авакян Б. П., Тер-Баляя Н. А., Налбандян Г. М. Третий съезд ВОГИС им. Н. Н. Вавилова. Тез. докл., 3, Л., 1977.
- 4. Авакянц С. П. Автореф. докт. дисс., Ереван, 1975.
- 5. Датунашвили Е. Н. Влияние обработки пектолитическими ферментными препаратами виноградной мезги на состав и качество вин. М., 1967.
- 6. Валуйко В. В. Биохимия и технология красных вин. М., 1973.
- 7. Вильямс В. В., Таранова Р. Д. Виноделие и виноградарство СССР, 4, 1950.
- 8. Фролов-Багреев А. М., Агабальянц Г. Г. Химия вина. М., 1951.