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Abstract —-A theory of thermal and nonthermal radiation in a vacuum background of arbitrary
temperature generated by relativistic polarizable particle with spin is proposed. When the particle
rotates, radiation is produced by vacuum fluctuations even in the case of zero temperature of the
system. In the ultrarelativistic case, the spectral-angular intensity of radiation is concentrated
along the velocity of the particle. At finite temperatures of particle and vacuum, the particle
temperature (in its rest frame) rather quickly acquires an equilibrium magnitude depending on
the velocities of rotation and uniform motion and the background temperature. This equilibrium
temperature determines the intensity of radiation. The dynamical slowing down takes a very long
time until the kinetic energy of uniform motion and rotation is converted into radiation.

Keywords: relativistic polarizable particle with spin, therma and nonthermal radiation,
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1. Introduction

Nowadays, stationary but dynamically and/or thermally non-equilibrium physical situations
including various important physical systems like a small particle (an atom) in a vacuum
background, two particles or the bodies in relative motion or out of thermal equilibrium, etc.
have attracted continuously growing interest of many researchers [1—21]. Dynamically non-
equilibrium situations involve the systems in relative motion [3—8,12,16,17,21] and rotating
ones [9,14,15,18—20]. Close relation between the aforementioned non-equilibrium problems
allows one to consider different parts of these systems as being in local equilibrium and to use a
generalized form of the fluctuation-dissipation relations together with general principles of
relativistic invariance [2,3,9,12,14--17]. On the other hand, similarity of the non-equilibrium
problem statement for the bodies in relative motion or having different temperatures stems from
the point of view of relativistic thermodynamics [22].

However, unlike the long-standing issues involving the forces of fluctuation-electromagnetic
attraction/friction and heat exchange, much less attention has been paid to the radiation produced
by rotating/moving neutral polarizable bodies [9,18--21]. At total dynamical and thermal
equilibrium, a neutral particle embedded in vacuum emits and absorbs an equal number of
thermal photons. This equilibrium is violated for moving/rotating particles, when the spectra of
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radiation (absorption) are dependent on translational and rotational velocities of motion. The
spectral-angular distribution of long-wavelength radiation of such particles [21] differs
significantly from the radiation of a moving (rotating) macroscopic body (black body, for
example) [23, 24], since the particle radius is much lower than the Wien wavelength of thermal
radiation.

For a spinless relativistic particle in a heated background (thermalized photonic gas) the
corresponding radiation spectrum was calculated in our previous work [21]. The aim of this
paper is to study the effect of combined action of uniform motion and rotation on the particle
emission spectrum. We assume that the particle and vacuum are characterized by different local
temperatures well defined in their respective frames of reference. If the rotation velocity of the
particle is nonrelativistic and its radius is small compared to the characteristic Wien wavelength

of thermal photons, then it can be treated as a point-like rotating fluctuating dipole. We obtain

afull set of equations describing the dynamics and properties of radiation emitted by a moving
spin-possessing particle. In particular, we formulate the condition of particle radiation at zero
temperature of the entire system. This condition meets the condition of Zel'dovich superradiance
[25, 26] where a rotating cylinder made of absorbing material is capable of amplifying certain
modes of impinging electromagnetic radiation, i.e. an additional emission of the particle appears.
In the case of nonmagnetic rotating particle with zero linear velocity the expression for the
integral intensity of radiation was recently obtained in [20] and coincides with our result. A
striking new finding is that the intensity is the same in the case of relativistic transational
motion, as well as upon paralel and perpendicular mutual orientation of the vector of linear
velocity and angular rotation axis. This is a clear manifestation of the fact that radiation of
rotating particle appears as aresult of its interaction with vacuum fluctuations of electromagnetic
field. We have calculated the corresponding angular and frequency spectrain the particular case
of Drude-like polarizability, and the general characteristics of radiation in the case out of thermal
equilibrium.

In addition to their fundamental significance, the obtained results may be of interest upon
creating new sources of directional microwave radiation, particle trapping in cavities, evolution
of gas-dust clouds in cosmic space, €tc.

The paper is organized as follows. In Sec. 2 we elaborate the arguments for the long-
wavelength thermal and nonthermal radiation by relativistic polarizable particle with spin and
arbitrary dielectric properties, which moves inertially in a vacuum background of a certain
temperature. In Sec. 3 we obtain the basic formulas for the intensity of emission and absorption
of the long-wavelength radiation depending on the linear and angular velocity of the particle, its

temperature and the temperature of vacuum. In Sec. 4 we discuss the general characteristics of
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nonthermal radiation which is emitted at zero temperature of the particle and vacuum
background. Section 5 is devoted to the calculation of nonthermal and thermal radiation at
various conditions. Numerical calculations are performed in the case of particle polarizability
for good conductors in the low-frequency limit of Drude model. Section 6 summarizes the
conclusions. Appendix A contains an identity of the Joule dissipation integral in the co-moving
reference frame, the particle heating rate in its own frame of reference and the work spent onto
the braking of particle rotation in the co-moving frame. This allows one to obtain the equation
for the rate of the change of particle temperature in its rest frame. Appendix B contains the basic
results in configuration with perpendicular mutual orientation of spin and velocity vector.

2. Problem statement and general relations

Consider a small particle of radius R and temperature T, uniformly moving with
velocity V through an equilibrium background radiation with temperature T, (Fig. 1, reference
frame ) and rotating with angular velocity Q =(,0,0) in a co-moving reference frame X'.
The third frame of reference X" denotes the rest frame of the particle rigidly rotating relative to
the system X'with velocity Q. Since the latter velocity is assumed to be nonrelativistic, this
means  that QR/c<<1 : We aso assume that  the  conditions
R <<min(2zhc/k,T,,2zhc/k,T,) arevalid. In this case, when emitting thermal photons, the
particle can be considered as a point-like dipole with fluctuating dipole and magnetic moments
d(t),m(t) . Material properties are taken into consideration through the frequency-dependent
dielectric and (or) magnetic polarizabilities «,(®) , «, (@) which are given in the particle rest

frame X" .

S

2

Fig.1. Configurations (a) and (b) of the system with different mutual orientation of the vectors of
angular and linear velocities.
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Let the surface o encircle the particle at a large enough distance so that fluctuation
electromagnetic field on the surface o can be considered as the wave field. According to the
conventional form of the energy conservation law in the system within the volume V restricted

by the external closed surface o, we can write

dw

_dtzis.d5=+i<j-E>d3r , (1)
where
wo [ @
Y 8r
and
C
S:E<ExH> (©)

denote the energy of a fluctuating electromagnetic field in volume V restricted by surface o
and the Pointing vector of this field. The second term in (1) represents the Joule energy
dissipation integral, and the angular brackets in (1)—(3) denote total quantum and statistical
averaging. The wave-field on the surface o has the wave character. Within the quasistationary
approximation used ( dW /dt =0) and from (1) one obtains the general expression for the

intensity of radiation

|=§S-d5~=—j<j-E>d3rE|l—|2, (4)

o \%
where I, = 1,(T,) isthe net intensity of thermal radiation emitted by the particle in vacuum, and
I, =1,(T,) istheintensity of background radiation absorbed by the particle.

Our next step is to represent the right-hand side of (4) in a more convenient form. In the
case of stationary electromagnetic fluctuations, using relativistic transformations for the density,

of current and charge, electric field and volumein systems ¥ and X', weobtain (S =V /c) [3]

v’ -

dQ/dt=(d-E+m-H), (6)
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F:j<pE>d3r+%j<ij>d3r:<v(d.E+m.H)>. (7

In Eq. (5), F, isthe projection of force F onto the velocity direction (only this component of

force differs from zero), the points above the dipole moments in (6) denote the time derivative.
Up to this point, formulas (1)-(7) coincide with those in [21], where the particle has no spin. In
that case, the Joule dissipation integral (in the left-hand side of (5)) determines simultaneously
the rate of particle heating dQ'/dt’ in X'. When the particle rotates with angular velocity Q'

with respect to X', the work of fluctuating field is spent also on stopping this rotation. In this

case, as shown in Appendix 1, one obtains

[(-E)dr =0 E)=Q' =@+ M"Y, @®

where Q" is the heating rate of the particle in £"and M'is the braking torque in X'. Due to
nonrelativistic rotation of reference frame X" relative to ', we have dt” = dt’ = dt(1- g*)"? ,

Q'=0Q,andat Q= (Q,0,0) one obtains
Q" =CdT,/dt' = C,(1— £%) V2dT, / dt, 9)
M'Q=MQ=@1-)"*MQ. (10)

where C, is the heat capacity of particle and the relativistic transformation of torque has been

used. From (5) and (8)—(10) it follows

T, _Q-(-£)*M,0

, 11
dt C,(1- ﬂZ)l/Z (11)
where both Q and M, are givenin reference frame X.
With allowance for (4) and (5) the intensity of radiation takes the form
dQ
l=1,—l,=- =S+FV |, 12
1 2 ( dt X j ( )
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where dQ/dt and F, are given by (6) and (7). It is worth noting that the relationship between
dQ’/dt" and dQ/dt through (5) and (8) formally corresponds to the Planck formulation of
relativistic thermodynamics assuming that Q is associated with the amount of heat in reference

frame X. Using (12), we can aso rewrite Eq. (11) in another form which can be more

convenient in certain cases

dT, =1, +FV+@1-85)"*M Q
dt == C (1_ ﬂZ)l/Z ' (13)
0

To complete this consideration, we write down an obvious equation for the braking torque of the
particlein reference frame X

M =(dxE)+(mxH). (14)

Equations (5)—(12) are the basis for our further calculations of the intensity of thermal
radiation. The appearance of Eg. (12) is formally the same as in the case of a spinless particle
[21], but all the quantities in the right-hand side depend on the angular velocity Q. For

calculating the quantities Q, F, and projections of torque M, , we use our general method [3],

representing the quantities in (6), (7), (14) as the products of spontaneous and induced
components

(dQ/dt = (d¥E™ +d™E® + mPH™ +m™H®),
F, =(0,(d®E™ +d™E® + mPH™ + m™H=)),

M=d¥xE™ +d™xE¥ +m®xH™ +m"™ xH%®,

(15)

All the quantities in the right-hand side of (15) have to be Fourier-transformed over the time and

space variables t, x,y z . The points above the dipole moments indicate the time differentiation.
The induced dipole moments d™,m™ have to be expressed through the fluctuating fields
E® H? vialinear integral relations. The induced fields E™,H'™ have to be expressed through

d¥,m¥ when solving the Maxwell equations containing the fluctuating currents induced by the
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dipole moments d¥,m¥. The arising correlators of the dipole moments and fields are calculated
with the help of fluctuation-dissipation relations.

3. Intensity of radiation
In the case shown in Fig. 1a(Q = (©,0,0)), agenera expressionsfor F ,Q and M, were

obtained in [19] and have the form

ho
F, = g Ida)a) Idxx{(l x*)A-p )O‘”(C"ﬁ) { k - coth 2k5j+
( o) (16)
2 2 " h
+a+x»)a+ g% + apxfe (@, +Q){C°th 2k§2 B 2k, T, }
_ hy ¢ w2V — B2\ " . ho hay
dQidt= 7 {(1 XW=pr)el (@) [COthszTz oo 2|<5Tj+
o, +) (17)
, , ) . ho @y +
e xd)as p2) + 4o, + Q) {Com 2,1, " T, }}
M, = — +Q)-
., (18)
2k, T, 2Kg T,

In (16)—(18), we used notations y = (1- #°) %, w, = yw(1+ px) . We also did not specify the
type of particle polarizability, assuming either electric o, (w) or magnetic «,, (@) polarizability,

or their sum; a"(w) denotestheimaginary part of a(w). Substituting (16), (17) into (12) yields

l=1,-1,=

-3~ A" (@) [0y (0,) 0, (@) +

(19)
(a,ﬂ+Q) [n (w0, +Q)—n (a))]
e xa+ g2+ 4p [ (w0, -0) [n,(@, —Q)—nz(w)]]}

2

XP(X) —
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1 .
ni(X)—W,&—kBTi/h,l—l,Z. (20)

From (19), the intensity of radiationin X takesthe form

2(1-X*)(1- B2)a"(@,)N, (@) + |1+ X?) 1+ B )+4[>’x]}

= 2rc? jda)a) Jd { a)ﬂ +Q) 1(a)ﬂ +Q)+a (a)ﬂ —Q)nl(a)ﬂ —Q)] (21)

In the case of motionless particle without spin, V =0,Q2 =0, Eg. (21) reduces to the well-known

result which follows directly from the Kirchhoff law [27]

1

4h
.= " [qd 4 _n ’ 22
! 7Z'C3'(|; wwer () exp(ha/k,T,) -1 (22)
while at Q =0,V #0 we obtain [21]
2h7°° 4:l 2 _n
|l(r1):ﬁjdww Jax@+ po2a(@,)|explnm,) 1k,T,)-1]. (23)
0 -1

According to (21), the spectral-angular intensity distribution of thermal radiation is given by
(dQ =27sinAde)

2(1- B%)(1- cos? B)a"(yo(1— B cosé) n, (yo(1— S cosh))+

+@+ cos? 9)a+ g2) - 48 coso)- (24)
a"(yo(1- B cosh) + Q)n, (yo(dl— fcosh) + Q)+

' L a"(yo(1- B cosd) — Q)n, (yo(1— fcosh) — Q)}

d’l _ yho'
dwdQ  4r2c?

where @ is the angle between the particle velocity and the wave vector of radiation. From (24)
one can see that the uniform motion and rotation of particle significantly should affect the

spectral and angular distributions of thermal radiation. Thisis demonstrated in what follows.
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4. Nonthermal radiation at Q #0
A remarkable consequence of Eq. (21) is the fact that a rotating particle emits photons even at

T, =0. To prove this, we perform in (21) the limiting transition T, — 0 by means of the relations

lim;, n,(e) :;(sign(a))—l)_ (25)

With allowance for (25) Eq. (21) takes the form

+1 QT apx)T

rh Idx Idcoco“[(l+x2)(l+,62)+4,Bx]a”(Q_7a)(1+lgx)):

= 3
27mC” )

- Y faestar@-g)

3zc?

Il

(26)

The result in the second line of (26) means that the total emitted radiation intensity does
not depend on the particle velocity. At the same time, making use the transition T, — 0 in (19),
we obtain 1,(0) =0, i. e. the particle does not absorb the external radiation. Coming back to the
first line of EQ. (26), we can see that the distribution of the spectral-angular intensity of radiation
depends on the velocity and takes the form (dQ = 27sin6d@)

d’l, yho'
dodQ  47%°
-a"(Q - yw(l- B cosh))

0(Q-yold-p cos@))[(1+ cos? )1+ B2) - 4B cos&’]- o

where ©(x) isthe unit Heaviside function. Asfollows from (27), the spontaneous radiation takes
the frequency range

O<w< o, =Qy1-pcosh)™. (28)
The maximum frequency is emitted in the forward direction & =0

_o 18
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In the ultrarelativistic case g — 1,y >>1 it follows o, (0) = 2y Q >> Q. In the opposite
direction (6 =7r) Eq. (28) yields o, (7) = Q/2y << Q). Therefore, the radiation spectrum is
strongly anisotropic. At low velocities f << 1, correspondingly,
0o (0) = QL+ ), @, (7) =Q1- ). At =0, the spectrum (27) takes the ssimplest form,

though a small angular dependence still takes place :

d’, ho'
dodQ 4r%°

O(Q - )1+ cos’ 0)"(Q - ) (30)

These spectral properties can be used for the experimental verification. In Sec. 5 the spectral
properties of this nonthermal radiation will be analyzed further.
It is worthwhile also to consider the characteristics of particle dynamics and heating. In

particular, the particle thermal state is crucially important since the initial condition T, =0 is

violated with time. By performing transitions T, =T, — 0 in Egs. (16), (18) one obtains

A LE R (3D
zct )

M, == [d5a@-8) (@)
TCyy

Furthermore, substituting (26), (31) and (32) into (13) yields

ﬂ_ 4h
®dt  3xcy

[desr@-5a(@-¢) (33)

It is worthwhile to emphasize once again that temperature T, corresponds to the rest frame of
particle, and time t corresponds to the rest frame of vacuum. According to Eq. (31), a rotating
particle in a vacuum experiences frictional drag, i. e. cold vacuum becomes viscous. As follows
from (32), the rotation is also decelerated, while from (33) one can see that the particle is heated.
This means that instead of Egs. (27), (31), (32) one should use the more general formulas (24),
(16), (18), depending on T, . In this case, the nonthermal radiation will be mixed with thermal
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component, but the former one does not disappear. Moreover, at a large enough characteristic
time of heating (see Sec. 5), nonthermal spectrum (27) will be observed for rather long time.

In the case of particle rotation around the z axis (Fig. 1b), the corresponding basic formulas

are given in Appendix B.

5. Special case: conductive particle with the Drude-like dielectric properties

In further analysis, we discuss the case where the particle polarization corresponds to the low-
frequency limit of the Drude dielectric permittivity ¢(w) =i-4r o,/ @, where o, is the static
conductivity. Respectively, the electric and magnetic polarizabilities of a spherical particle with
radius R are given by [28]

al(w) =3R%w! 4r o, (34)
2
al (@) =3¢ 1(x), x=2R-(2r0,w)"2 /¢ (35)
8r o,
X sinhx+sinx
X)=1l-———-—— 36
Z() 2 cosh X — cos X (36)
For R << c/(2zc,w)"?, from (35) and (36) it follows
aﬂ ~ 272— RSUO (37)
" 15¢?

2 2
andinthiscase ¢, differsfrom «_, by only numerical factor 87[5( Raoj :
c

a) nonthermal radiationat T, =T, =0
First, let us compare the time scales of particle rotation and heating, assuming £ <<c. Using

(32) and the dynamics equation

1dQ/dt=M,, (38)

where | = (87 /15)R°p istheinertiamoment of spherical particle with density p , one obtains
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(39)

3Ot )
Q= Qo[l+ 0 ]

87°pR%c,C°
where Q, is the initial angular velocity. From (39) and assuming that o, =const, the

characteristic decay time t,,, corresponding to adecrease of Q by two timesis given by

407°pR?o ,C°
o

(40)

t,=

On the other hand, with allowance for the fact that at low temperatures the heat capacity of a

metallic particle can be written as C, =4;rpR3~aT (a is a numerical coefficient), and

assuming Q ~ const =Q,, from (33) one obtains the time needed to increase the particle

temperature fromzeroto T =T;:

3 3 2
. 407 pO'O(; aT, . (41)
hQ,
From (40) and (41) it follows
RO, 1
t,,/7= o = 42
atr=( R £ “

For example, at Q, =10“s™,R=2nm,T, =1K and a=60erg/g-K? [29] (gold) we obtain
t,, /v =10°, whereas the value of ¢ is estimated to be more than 100 years, since for gold at

o, >>10"s™ if T, > 0. This means that the condition of an approximate constancy of the

angular velocity can be fulfilled during a rather long time, while the spectrum of radiation will be
described by Eq. (27).

As we have shown in [21], the time of stopping is aways much less than the time of heating.
Therefore, during the time of heating the impact of particle linear deceleration on the nonthermal
radiation spectrum (27) is negligible.

Next we discuss the radiation spectrum in more detail. By inserting (34) (a" ~ @) into (27)

and integrating over the frequencies one obtains
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dl,  #Q? [RQ)S [0+ cos? 9)@+ B2) — 4 cosd)]

9 _ 43
dQ 1607°%,\ ¢ 7*(1- B cosd)® (43)

One can see from (43) that the angular spectrum is strongly anisotropic and the maximum

intensity in the forward direction is given by

) _ nQ (RQY . s
(dfijgzo_SOﬂ'SO'O[ c j(1+'3) 4 (44)

The spectral distribution of radiation is obtained by using (34) and integrating (27) over the solid
angle Q

d, = 3 nQ? (QR
do 8rx° Bo,\ ¢

3
j S(w, B, 7)W,w=a/Q (45)
where the function S(w, £,y) is given in Appendix C together with the resulting formula for
configuration Q = (0,0,Q) (Fig. 1b). Thetotal intensity of radiation is obtained when integrating
(43) or (45) and has the form

= (QRJ (46)

L 307[20'0 c

A remarkable fact is that this nonthermal intensity does not depend on the particle velocity, in
contrast to the angular and frequency distributions of the intensity. This is a consequence of (26)
and does not depend on the functional form of polarizability.

Figure 2 shows the angular intensity distributions (43) normalized to the maximum intensity
(44), depending on the velocity factor S . Also shown isthe distribution in configuration Fig. 1b,
Thick solid and dashed lines and thin (solid and dashed) lines correspond to configurations (a)
and (b) in Fig. 1, respectively. Figure 3 shows the spectral-frequency distributions normalized to

the factor

3 hQZ(QR

87° o, \ ¢

3
] calculated by Eq. (45), depending on the velocity factor S .
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—
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0/n

Fig. 2 Normalized angular spectrum of nonthermal radiation, depending on £ . Solid lines
correspond to configuration Q = (0,0,Q), dashed lines—to configuration Q = (,0,0). Thick
and thin lines correspondto £ =0.05, #=05(a) and =09, S =0.99(b).

Asin Fig. 2, the thick and thin lines correspond to configurations (&) and (b) in Fig.1. One can
see that at small velocities (Fig. 2a) the angular spectra considerably depend on configuration,
whereas with increasing velocity (Fig. 2b) this dependence disappears and the spectra are
strongly concentrated in the forward direction. With increasing relativistic factor y the

frequency spectrum becomes broader up to the maximum possible frequency o, = 2y Q.
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Fig. 3 Normalized frequency spectrum of nonthermal radiation, depending on £ . Solid lines
correspond to configuration Q = (0,0,Q2), dashed lines—to configuration Q =(€,0,0). Thick
and thin lines correspondto =05, f=0.8(a) and £ =0.99, B =0.999 (b).

b) finite temperature conditions and radiation

At T, >0 and g =0, the radiation exists evenat Q2 =0 [21]. In the general case f = 0,Q =0,
the characteristics of spectrum depend on S and Q (see Eq. (24)). For the particular case of
particle polarizability (34), using Egs. (16)—(19), (21) and performing integrations explicitly
oneobtains (4 =k,T, /74, i=212)

871'4 hRS (1+ﬂ2/5) 6 6
F, =- 9 9 Qlr9) | 47
X 21 C4GO ﬂ (1_ ﬁz) 2 + 1 l//1( 1) ( )
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87* nR*® | (1+2pB° +/3 /5)
= —1-85)8° Qly 48
4 3
_ 87 th (@18 (1+,8)9 | 49
21 c’o, 1- 5%
8z* nR?
=" Cg%slﬁwl(msl), (50)
27 hR%Q
M, = -T2 IS0 gt 4 90 Pl 8], (51)
15 c°o,
21 7
X) =1+ X2 + x* + x°, 52
Vi) =1t 02 X T e X T gogs (52)
3
¥, 87 (53)
Using (11), (48) and (51) yields
3
at, =22 "
7 C’o,pC,
(1+2ﬂ +p* /5)
(1—,3 )3/2 19 1 ﬂ l//l(Q/‘g)‘l' , (54)
2 2
TS g ey, @1 8)
2077\ \[1- B2
where C, =3C,/4zpR®. Moreover, using the dynamics equation mcdg/dt = (1- 4%)**F, and
(47) yields
aprdt=-2 M paprye| G P19 g5 oo, 1)), (55)
7 c’po, 1- %)

Interestingly, formulas (47)—(50) and (55) prove to be valid aso in configuration (b) (Fig. 1b).

However, the formulasfor M, and dT, /dt in this case are different and take the form

27° hR*Q
M, == T [9 + 8,19, (56)
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3
L L S AR
7 Cc’o,pC,
(57)
. (1+2ﬂ2+ﬂ4/5)96_36 1- By (Q/lg)_’_ﬁi(g“-hgﬂ/j (Q/Q))
(1_'32)3,2 Y " 1 1 ZOEZW 2 1 Vo2 1

Formulas (45)—(57) provide the basis to control the dynamical/thermal state of particles and
their integral radiation.

As was shown in [21] in the case of a spinless particle ((2=0) and T, =const (when the
thermal state of vacuum is not changed), the characteristic time scale of particle cooling/heating
7, is many orders of magnitude lower than the time scale 7, of particle stopping. Owing to
this, the particle rather quickly reaches a quasi-equilibrium thermal state (it its own rest frame)
with the temperature T, = x T, where the factor x isan increasing function of 4. At Q > 0 this
picture is not changed qualitatively. Moreover, smple analysis of Egs. (51), (54) and (55) shows
that the characteristic time scale of rotationa deceleration z,, is much longer than the thermal
timescale z, ( similarly to the “cold” case), but 7, <<z, ,i. e 7, <<7y <<74.

Thus it follows that in the steady-state thermal regime one obtains T, —» T, = x (£,Q)T,, and
the particle spectrum will be determined by its effective temperature T, for a long time of

angular and trandational deceleration. The function «(f,Q) can be determined using the

stationarity condition dT, /dt =0 and Egs. (54), (57). For example, at Q2 =0 from (54) it follows

T =T, '(14- Zﬁz +2ﬁ24 /SJ ’ (58)
Q-5

whereas the corresponding intensity of radiation (by inserting (58) into (50)) is given by

- 87’ th3 (kBsz‘s 1+ 2° +2,6’24/5) (59)
21 c’o,\ & 1- 5%

Comparing (59) with (46) we can see that the “steady-state” thermal radiation is expected to be

much stronger than the nonthermal radiation, if k;T,/Q-7>1, and its magnitude increases

further with increasing relativistic factor as ~ y*.

193



Kyasov et al. || Armenian Journal of Physics, 2014, vol. 7, issue 4

Another simple case corresponds to a motionless particle with spin ( Q>0 and f=0) and
a cold vacuum, T, =0. In this case, using the stationarity condition dT,/dt =0 and (54) one
obtains 9, =5.17Q2, i. e. the effective particle temperature is determined by the angular velocity.

According to Eg. (50), the intensity of radiation takes the form

I, =8.35-10°4R%*Q° / ¢’o, (60)

This intensity is by ~3-10° times higher than (46). For example, assuming Q =10%s™", for a
gold nanoparticle (o, ~ 10" s™) with aradius of 2nm , from (60) one obtains I, ~ 3-107'W .

In the general case V #0,Q=0,T, >0, the dependence «(f,Q) in the equation
T, =x(B,Q)T, is calculated numerically. Figure 4 and Fig. 5 shows the calculated steady-state

ratio T, /T, and the normalized radiation intensity | =1,/1, for a gold nanoparticle, depending

on Q/9, and F. The normalization factor is I, =

8;[14 fsiz [kB;_szf. One can see that the
impact of angular rotation velocity is rather small at £ <0.9 and Q7/k,T, <5 and increases
greatly at Qn/k,T,>5 and £ > 0.9 One can also note a universal character of T, /T, and the
normalized intensity at a high angular velocity Q (irrespectively of £). A more detaled

analysis of the frequency-angle spectral characteristics of thermal radiation requires special

consideration.

1.5 T T T T

/

/
/
0.51 AR
Ve
1/20 7

1] — — [ — 1 | |

0 2 4 6

Qiﬁz

Fig. 4. Effective equilibrium temperature of a motionless particle, V =0 (solid line) and the
intensity of radiation normalized onto the factor |, (see the text) corresponding to configuration

inFig. 1b.
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Fig. 5. Same as in Fig. 4 at different velocity factor of the particle. Lines 1 to 4 correspond
to =0,0.50.9,0.99.

6. Conclusions

We have formulated a theory, that describes the nonthermal and thermal radiation of a
relativistic polarizable particle with spin moving in a vacuum background of arbitrary
temperature. We have established that the particle emits the long-wavelength photons
(wR/c <<1) even at zero temperature of particle and vacuum. The condition of nonthermal
radiation meets the condition of Zel’ dovich superradiance. This situation differs principally from
its counterpart at Q =0,V =0,T, =T, =0, when a vacuum background has no effect on the
uniform motion of particle, in accordance with the principle of relativity. The presence of
rotation changes the situation radically and allows one to speak about rotation relative to the
vacuum environment. This implies a physical non-equivalence of inertial and non-inertial frames
of reference. In particular, this non-equivalence also leads to finite viscosity of vacuum (Eg.

(31)). Despite its minuteness, the observation of nonthermal radiation can be of great
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importance when studying the fundamental properties of vacuum. A striking feature is that the
integral intensity of nonthermal radiation is independent of the particle velocity and the mutual
orientation of spin and velocity vector. When the particle or/and vacuum background have
finite temperatures, the thermal state of particle is stabilized much more faster than the
characteristic time of slowing down, and the quasi-steady-state temperature of particle is
determined by the values of angular/linear velocities and the background temperature. The state
of equilibrium is reached irrespectively of the initial temperatures of particle and vacuum. At
relativistic velocities, the particle temperature increases considerably and may reach the melting
point. The intensity of radiation increases significantly and is concentrated in the velocity
direction. The direction of particle spin relative to the velocity has a significant impact on the
frequency-angular spectral distribution of radiation and the integral intensity.

These results can be of interest in creating new types of the directional microwave radiation,
in studying particle motion in cavities and in astrophysics. Astrophysical applications involve the
observations of microwave cosmic radiation from spacecrafts when investigating the
gravitational compression of gaseous and dust clouds, and accretion of massive cosmic objects.
The directional effect of therma radiation of moving particles can probably influence the
observed anisotropy of the primary 2.7 K blackbody radiation.

Appendix A

Consider the transformation of product d'-E' (where d'=0d'/d7) when passing from the
referenceframe X' to X" (Fig.1). Thevaues d'(z), E'(r) and d"(r), E"(r) are considered

as the random functions of the own time 7 in ¥’ and X", which is the same in both these
systems since the rotation of X" is assumed to be nonrelativistic. When rotating around the x’
axiswith the angular velocity Q (Q isgivenin X'), we obtain

d,(7) = di(7)

d(r) =dj(r)cosQr —d](r)sinQr (A1)
d;(r) =dj(r)sinQz +d/(r)cosQr

E,(r) = EX(7)

E,(r) = Ej(r)cosQr - E](r)sinQr (A2)
E!(z) = E}(r)sinQr + E}(r) cosQr
d-E'=dE;+d/E +dE; (A3)

Substituting (A1),(A2) into (A3) yields

d" . E! — d'” . EI! + (d I!E;! _ d;Eﬂ)Q — d'" . E” + (d’l X Eﬂ)x . Q (A4)

y y
With allowance for the identity of torque M, = (d"xE”), in £’ and X", we obtain from (A4)
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d-E'=d"-E"+M-Q (A5)
Using statistical averaging of (A5) with allowance for <d" . E”> =Q", where Q" is the rate of the
internal energy change of spinning particle (heating rate), we obtain

j<j’-E'>d3r'=<d’-E'>=Q"+M;Q’:QuM;Q (A6)
\

Equation (A6) is easily generalized in the case of arbitrary angular velocity Q = (©,,Q,,Q,)of
the system X" relativeto X'. In this case we obtain

[(-E)d = (0 E) = Q"+ W'Y (A7)

\
The same calculations can be performed for the contribution of magnetic moment m’. The

resultant Joule dissipation integral with alowance for the electric and magnetic polarization
contributions takes the form (cf. with (A7))

[(i-E)d°r =(@"-E'+m" - H)=Q"+M'QY (A8)

\

Unlike (A7), the quantitiesof Q" and M’ in (A8) involveboth d’ and m’'.

Appendix B

In configuration Q L x (Q112), the expressionsfor F,,Q and M, aregiven by [19] :

F =

X

87z c’

@+ x®)@r p2) +20- p2)a-x?) + 4,B><]a”(a)ﬂ + Q{coth ho ot h(w/’JrQ)} +

2%,T, 2k, T,
. hao hao (B1)
2 2 " . . B
+ @+ x?)a+ )+ 4p)a" (o)) {cochKBT2 coth ZkBTj
Q=
[+ )@+ p2) +20- p2)a-x?) + 4w, + )[coth ho othw 1| B2

ho, }
—coth
2k, T, 2k, T,

+ [(1+ x*)1+ )+4,BX]a”(a)ﬁ) {coth
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B ho h(a)ﬂ+§2)
M, =g jdmw jdx3 X2 +28X)a"(@ +Q){coth2kBT2—coth 2T, } (B3)

Using (B1)—(B3) yields

===

fa+ )@+ g7+ 4px"(@,) [ (@,) - 0, (@)]+

(@, + Q) (@, +Q) -, () ]+
+a+ x?)a+ g2 + 20— x*)A- g2) + 4px)- { oy ) [0, - )1 0)] (B4)

14

I, =

4rc? 0
(B5)

@)@ p2) +20-x7)0- p7) + 4] {“"(wﬂ + Q) (@, +Q) +}}

+ a"(a)ﬁ —Q)nl(a)ﬁ -Q)

2[(1+ cos? O)(1+ B?) -4 cosH]a”(ya)(l— B cosé))n, (yo(l- B cosh))+

4+ [+ cos? O) L+ B2) + 201 cos® ) (1— B°) - 4B cosO)]- (B6)
a"(yo(1- B cosb) + Q)n, (yol— fcosh) + Q)+

' L a"(yo(1- B cosb) — Q)n, (yw(l- B cosh) - Q)}

d’l  yho'
dwdQ 8r%°

At T, - 0 weobtain

I, = de wjggmw [a+x?)a+ g2) + 20— p2)1-x2) + 4px " Q- w,) =
47Z'C
(B7)
a"(Q-¢)
d’l,  yho'

G0 ~ gric? @ 1ol foost) (B8)

: [(1+ cos® O)(L+ B?) + 2(1- B?)(1—cos® §) — 43 cos@]a"(Q — yo(1- B cosh))

It should be noted that due to the lack of the axial symmetry (in this case), the spectral-angular
intensity distributions in (B6) and (B8) are averaged over the azimuthal angle ¢ .
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APPENDIX C

Formula (45) is obtained when substituting (34) in (27), introducing a new variable
Q-yw(l- pcosh) =y and integrating by parts. The resultant expression has the form

S(w,B,7)=f,(yw, B,1-yw(l- ) -01-ywld- 5)) -
- . (yw, B, 1-yw(l+ B3))-O1-y w(l+ )

f.(abx)= & b%) e +2[(1+ b2y (@=D —2} 3 +1{(1+ bz){u (a-1)2}_ 4(""‘1)}2 (C2)
3 a 2 a

(C1)

4a’h? a’p? a’b?

In configuration (b) (Fig. 1b), function (C2) is replaced by

1(30°-1D) , 2| (@-)@0°-1) 2|,
f.(abx)==-"" Tty S| A T T3
2( ) 4 ab? 3 a?b? a
(C3)
1 a2b4+6ab2+a2+1—6a2b2—3b2—2a+4(a—1) o
2 a‘h? a
References

[1] S.Y.Buchmann, D.G. Welsch, Progr. Quant. Electr. 31(2) (2007) 51.

[2] M. Antezza, L.P. Pitaevskii, S. Stringari, and V.B. Svetovoi, Phys. Rev. A77
(2008)022901.

[3] G.V.Dedkov, A. A. Kyasov, J. Phys.: Condens. Matter 20 (2008)354006.

[4] S. Schedl, S. Y. Buhmann, Phys. Rev A80(4) (2009) 042902.

[5] T.G. Philbin, U. Leonhardt, New J. Phys. 11 (2009) 033035.

[6] J.B.Pendry, New J. Phys. 12 (2010) 033028.

[7] L.S.Hoye, I. Brevik, Physica A181 (1992) 413; Physica A196 (1993) 241; Eur. Phys. Lett.
91 (2010) 60003.

[8] G. Barton, New J. Phys. 12 (2010) 113044; J. Phys.: Condens. Matter 23 (2011) 355004.

[9] A.Manjavacasand F. J. Garciade Abgjo, Phys. Rev. Lett. 105 (2010) 113601; Phys. Rev.
A82 (2010) 063827.

[10] K.A. Milton, Am. J. Phys. 79 (2011) 697.

[11] D.A.R. Dalvit, P.A. Maia-Neto, and F. D. Mazzitelli, in: Casimir Physics, Vol.834 of
Lecture Notes in Physics, ed. By D.A.R. Dalvit, P.W.Milonni, D.Rorberts, and F. da Rosa
(Springer, Berlin Heidelberg, 2011), p.457.

199



[12]

[13]
[14]

[15]
[16]
[17]
[18]

[19]

Kyasov et al. || Armenian Journal of Physics, 2014, vol. 7, issue 4
F. Intravaia, C. Henkel, and M. Antezza, in: Casimir Physics, Vol. 834 of Lecture Notes in
Physics, ed. By D.A.R. Dalvit, P.W.Milonni, D.Rorberts, and F. da Rosa (Springer, Berlin
Heidelberg, 2011), p.345.
I.A. Dorofeyev and E.A.Vinogradov, Phys. Rep. 504 (2-4) (2011) 75.
R. Zhao, A. Manjavacas, F. Garcia de Abgo, and J. B. Pendry, Phys. Rev. Lett. 109
(2012) 123604.
G.V. Dedkov, A.A. Kyasov, EPL 99 (2012) 63002.
G. Pieplow and C. Henkel, New J. Phys. 15 (2013).
V. E. Mkrtchian and C. Henkel, Ann. Phys. (Berlin) 1-15 (2013).
G. V. Dedkov, A. A. Kyasov, in: Handbook of Functional Nanomaterials, Ed. by M.
Aliofkhazrael (Nova Science Publ., N.Y ., 2014), V.1, P.177.
G.V. Dedkov, A.A. Kyasov, arXiv: 1302.0736; 1312.1468.

[20] M. F. Maghrebi, R. Jaffe, and M. Kardar, Phys. Lett. 108 (2012) 230403.
[21] G. V. Dedkov, A. A. Kyasov, Physica Scripta, 89 (2014) 105501.

[22] D.B. Mérose, Quantum Plasmadynamics. Unmagnetized Plasmas (Berlin, Springer,
1980)
[23] G.R. Henry, R.B. Feduniak, J. E. Silver , and M. A. Paterson, Phys. Rev. 176 (1968)
1451.

[24] V.R. Baasanyan and V.E. Mkrtchian, Armenian J. Phys. 2 (2009) 182.
[25] YaB. Zd'dovich, JETP. Lett. 14 (1971) 180.

[26]

[27]
[28]

[29]

J.D. Bekenstein and M. Schiffer, Phys. Rev. D58 (1998) 0641014

G.V. Dedkov, A.A. Kyasov, J. Comp. Theor. Nanosci. 7 (2010) 1.

L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon,
Oxford,1960).

A.P. Babichev, N.A. Babushkina, A.M. Bratkovsky et al., Physical Quantitities:
Handbook, Eds. I. S. Grigor’'ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in

Russian].

200



