2 И 3 И U S И 5 Р Ч Б Б И Д Г И Б И Ч И Б 2 И Б Р В U БИОЛО-ГИЧЕСКИЙ ЖУРНАЛ АРМЕНИИ

XXXIII, 10, 1130-1137 1980

УДК 631.523.575.12

HACЛЕДОВАНИЕ CAMOCOBMECTHMOCTH У ВНУТРИВИДОВЫХ ГИБРИДОВ LYCOPERSICON HIRSUTUM

Н ВНАЖДАТА М.А.

Изучены гибриды F_2 и F_3 , полученные от скрещивания самосовместимой формы glabratum дикого вида. L. hirsutum с самонесовместимой формой того же вида—hirsutum. Часть растений в поколении F_2 оказалась самофертильной. Преобладающам часть растений F_2 и все проанализированные растения F_3 были самостерильными. Предполагается, что пыльца, продуцируемая гетерозиготными растениями $S_i \, S_f$, имеет единую реакцию, т. е. пыльцевые зерна с аллелем S_i и S_f обладают равной возможностью принимать участие в самооплодотворении. Возможно также, что при самооплодотворении гетерозигот $S_i \, S_f$ будет функционировать только пыльца с фактором S_f . Допускается, кроме того, что определенную роль в проявлении реакции самосовместимости—самонесовместимости играет инбридиит.

Ключевые слова: внутривидовые гибриды, самосовместимость, наследование.

Нами ранее [2] было показано, что внутривидовые гибриды F_1 между двумя ботаническими формами L. hirsutum—1. glabratum и f. hirsutum во многих случаях оказываются самосовместимыми. Обычно самосовместимыми при гибридизации самофертильных форм с самостерильными бывают только гибриды, которые возможно получать в обоих направлениях скрещивания. К числу видов, которые проявляют двустороннюю совместимость с близкородственными самонесовместимыми видами и формами, относятся Nicotiana langsdorfii [6]. Antirrhinum majus [10, 11], Papaver alpinum [7], Licium chinense [12], Solanum verucosum [4, 8, 14], Solanum рennellii [9]. В данном случае речь идет о формах, проявляющих одностороннюю песовместимость между собой. В настоящей статье приводятся результаты изучения признака самофертильности-самостерильности у внутривидовых гибридов F_2 и F_3 L. hirsutum.

Материал и методика. Опыты проводились в 1975—1977 и 1979 гг. Нзучались гибрилы F_2 комбинаций скрещивания — glabratum вр. $7924 \times$ hirsutum 2021 и glabratum вр. $7924 \times$ hirsutum. Вр. 7722 и гибриды F_3 —только первой комбинации. Самосовместимость растений определялась путем искусственного самооныления заранее взятых под изолятор цветков. Искусственное самооныление проводилось ввиду падтычинного расноложения пестиков. В коине вегетации подсчитывались плоды на растениях. Взято некоторое количество плолов для подсчета в них числа семян. Фертильность пыльцы определялась пидивидуально у каждого растения на временных препаратах, окрашенных ацетокармином.

Результаты и обсуждение. Гибриды второго поколения. По комбинации glabratum вр. 7924×hirsutum 2021 гибриды второго поколения изучались в 1975, 1976 и 1979 гг. В 1975 г. исследовано потомство двух самосовместимых растений F₁ (растения 4 и 21). F₂ получено как из семян от искусственного самоопыления, так и из семян от свободного ивстения. В целом в F₂ наблюдается заметное понижение плодообразованця и появление большого числа самонесовместимых растений. В F_2 , полученном от искусственного самоопыления, на самосовместимость проверено 16 растений (из 17-ти). Из них реакцию самосовместимости проявили только 6. У самосовместимых растений среднее число семян в илодах от самоопыления составило 16.7 (5.0-26.0), а от естественного опыления —41,5 (25,2—62,4). Следует отметить, что самонесовместимые растения обычно бывают малоурожайными. В F2 от естественного опыления было еще меньше самофертильных растений (из 15-ти проанализированных растений только 3 дали плоды от самоопыления, из которых достоверно самосовместимыми были 2).

В 1976 г. было изучено потомство клона 4, полученное как из семян от искусственного самоопыления, так и естественного опыления. Из семян от искусственного самоопыления выращено 22 растения, из которых 18 было проверено на самосовместимость. 9 растений образовали плоды от искусственного самоопыления. Все 9 растений, по-видимому, самофертильны (из которых 7, давних от 6,8 до 34,7 семян на плод, явно самофертильны, в то время как при естественном опылении этих растений получено 36,5—99,5 семян на плод). Самостерильные растения в основном или бесплодны, или малоурожайны. Совершенно бесплодны 4 непроанализированных растения. Они, вероятно, также самостерильны. Среднее число плодов у самофертильных растений составляло 144,8, а у самостерильных—31,2.

В потомстве из семян от естественного опыления самосовместимость определена у 20-ти растений из 21. Самофертильными оказались 11 растений (9,7—53,1 семян на плод). Остальные 9 растений самостерильны По-видимому, самостерильно также непроверенное растение, завязавшее всего 1 плод от естественного опылення. Среднее число плодов у самофертильных растений составило 147,7, у самостерильных—60,6.

В 1979 г. изучено потомство 7-ми самосовместимых растений F_1 . F_2 получено только из семян от искусственного самоопыления растений первого поколения. По всем гибридным семьям на самосовместимость проверено 102 растения (из 126). От искусственного самоопыления плоды завязало 41 растение. Осемененность плодов находилась в пределах 0—53,4 семян на плод. Поэтому не все эти растения можно считать самофертильными. Некоторые из них, имеющие бессемянные плоды, а также плоды, содержащие единичные семена, должны быть отнесены к псевдосамофертильным растениям.

Для отнесения растений к самосовместимым или самонесовместимым вычислено в процентах отношение числа семян на плод при само-

опылении к числу семян при естественном опылении (процент самофертильности). К самосовместимым отнесены те растения, которые дали 10 и более процентов самофертильности. (Отметим, что в 1975-1976 гг. почти для всех растений критерием самосовместимости считалась самофертильность более 10%). Таких растении было 26. Однако сделаны некоторые исключения. Как самосовместимое принято одно растение, которое имело всего 7% самофертильности, по отличалось довольно высоким показателем завязываемости плодов при самоопылении (6 от 9 цветков), дав 110 плодов при естественном опылении. В группу самосовместимых включены также 6 частично самофертильных расрастений, которые при естественном опылении или оказались совершенно бесплодными (2 растения), или образовали малое число илодов (1, 2. 12 и 15), в результате чего у этих растений отсутствует показатель осемененности плодов при естественном опылении. Эти растения (№ 588, 629, 6422, 6425, 6435, 6812), однако, дали некоторое количество плодов (4.5-50.0%) и семян (4-24 шт. на плод) при искусственном самоопылении. Итого, следовательно, 33 самосовместимых растения. Среднее число семян на плод у 27-ми растений при самоопылении составидо 16.0, в то время как при естественном опылении тех же растений 36.6.

61 растение F_2 было совершенно бесплодио при искусственном самоопылении. Они составили группу полностью самостерильных растений. В группу самостерильных следует включить также 8 исевдосамофертильных растений. Кроме того, есть основание полагать (отсутствие плодов или слабое плодообразование), что значительная часть не проанализированных растений также является самонесовместимой.

Между группами растений обнаруживаются серьезные различия по продуктивности (табл. 1). Самосовместимые растения характеризуются довольно высоким уровнем плодообразования при естественном опылении (кроме двух совершенио бесплодных растений, которые, однако, завязали по одному плоду при самоопылении—от 15 цветков № 629 и от 22 цветков № 6812; плоды содержали соответственио 24 и 7 семян). Между тем самонесовместимые растения в основном или совершенно бесплодны, или образовали небольшое число плодов. Исключение составляют семьи № 57 и № 66, где обнаружено достаточно хорошее плодообразование при свободном цветении. Наименьшей продуктивностью отличались растения, не проанализированные на самосовместимость.

Таким образом, подавляющее большинство растений F_2 проявляет реакцию самостерильности. Необходимо отметить, что самостерильные растения в целом обладали довольно высоким уровнем фертильности пыльцы. Следует поэтому полагать, что неспособность к самооплодотворению не вызвана стерильностью собственной пыльцы, а является результатом самоннгибирования. Из растений, показавших реакцию самонесовместимости при искусственном самоопылении, фертильность пыльцы определена у 42-х. Из них у 5-ти растений (все по N 66) она составляла 0,3—30%, у 12-ти растений (8 из них относятся к N 66)—

Bcero	68	66	64	60	58	57	Номера семей			
го	385	336	928	92	28	15	Число плодов на исходном растени	ии		
126	13	40	သို့ င	10	3	6	число растений	- Inpede		
36	4	9	5 0	, 0	00	2	из них без пло- дов	Всег	TAILLE	
1	98	2253	1611	385	290	1060	всего плодов	Всего по семье	Распределение растений	
50,1±12,2		56,3±10,2	3,2±1,9	38,5±14,0	22.3±11.7	176,7±87,2	среднее число плодов на расте- ние	емье Сам	ij	
33	4	6 1	2	C1	2	2	Число растений	Сам	20	
2	' <u></u>	0 0	; 	0	0	0	из них без пло- дов			
	52	374	6	273	212	750	всего плодов	ильные	hirsuti	
104,0±41,4	13.0	62.3	3.0	54,6	106,0	вр. 7924 X hirsutum 2021 по признаку самофертильности- Самофертильные растения Самостерильные растен	200			
69	∞ !	28	6	4	9	4	число растений	Сан		
22	ω,	ىن 4	4	0	6	2	из них без пло- дов	у самс		
1	44	1835	23	89	78	310	всего плодов	фертил		
27.1±13,0		65 5 5 5	ಬ್ರಂ	22,3	8.7	77.5	среднее число плодов на расте- ние	N 9		
24	- 0	n 13		_	2	0	число растений	стерилі Неана.		
12	0 1	9 7	из них без плодов					амостерильности, 1979 г. Неанализированные		
	2	173	0	23	0	I	всего плодов	1979 г. ванные	Tat	
7.6士3.9	2,0	13,3	0,0	23,0	0,0	ı	среднее число плодов на расте- ние	терильности, 1979 г	аблица	

Таблица

30—60%. у 25-ти—60—98%. Фертильность пыльцы установлена также у 7-ми растений, которые не образовали плодов и семян при обычном принудительном самоопылении, но в табл. 1 отнесены в группу неанализированных растений. У этих растений фертильность составляла. 7.6; 23.0; 28,2; 41,6; 42,5; 64,0 и 88,0% соответствению. Фертильность пыльцы у 20-ти изученных самосовместимых растений составляла 55—97% (преимущественно более 80%).

В 1977 г. было изучено второе поколение гибридов glabratum вр. 7924×hirsutum вр. 7732. Как было отмечено ранее [2], в F₁ только 1 растение этой комбинации дало плоды и семена от самоопыления. Изучено потомство этого растения от искусственного самоопыления и свободного цветения. В F2, получениом от самоопыления, проанализировано 3 растения, из которых только одно оказалось самосовместимым (от естественного опыления завязало 48 плодов). Два самостерильных растения при свободном цветении завязали по одному плоду. В F2 от естественного опыления изучено 13 растений. Реакция самосовместимости отмечалась у одного растения, давшего от свободного цветения 156 плодов. 7 растений от искусственного самоопыления не образовали ин одного плода (среднее число плодов по этим растениям при естественном опылении составляет 9,7). На 5-ти растениях искусственное самоопыление не проведено, так как взятые под изолятор бутоны к этому моменту опали не раскрывшись. При естественном опылении эти растения оказались совершенно бесплодными. По-видимому, они также должны быть отнесены в группу самостерильных. Среднее число плодов на растении по семье в целом составляло 17,2. Отметим, что эта комбинация характеризовалась невысокой продуктивностью также в F_1 [2].

Гибриды третьего поколения. Гибриды F_3 изучены только по комбинации glabratum вр. 7924×пітвитит 2021 (1979 г.). Все растения F_3 получены от искусственного самоопыления отдельных растений F_2 одной семьи (№ 67), являющейся в свою очередь потомством клона 4. Гибриды F_3 заметно уступают F_2 по мощности развития и плодообразованию. Однако встречаются и достаточно многоплодиые растения, например, в семье № 80. Самостерильны все проанализированные растения F_3 (табл. 2). Вероятно, неанализированные растения также проявили бы реакцию самостерильности. В пользу этого предположения говорит очень слабая продуктивность их. Отметим, что самонесовместнмость, по крайней мере для большинства растений, не обусловлена стерильностью собственной пыльцы, так кэк преобладающая часть растений имела довольно высокий уровень фертильности пыльцы. Например, из 31 растения F_3 , изученного по этому признаку, 4 растения имели фертильность пыльцы 14-32%, 4-43-53%, а 23-66-96%.

Чем объяснить самофертильность F_1 в комбинации glabratum×hirsutum и возникновение в F_2 , наряду с самосовместимыми, и самонесовместимых растений? Чем, наконец, объяснить, полную самонесовместимость F_3 ? Считается, что у гибридов S_iS_f , родители которых проявляют

	исход-	Всего по семье				Самостерильные растения					Неапализированные растения			
Hostepa cewell	Число илодов на ном растении число растений из них без пло-			среднее число плодов на расте- ине	число растений из них без пло- д в		всего плодов	• ÷ = •		число растепий из них без пло- лом всего плодов		среднее число илодов на расте- ине		
71	70	5	4	4	0,8+0.8	5	4	4	0.8	0	_	_/	_	
73	200	3	0	96	32,0±27,9	3	0	96	32,0	0	_	_		
76	51	3	2	2	0.7 ± 0.7	3	2	2	0,7	0	-	_		
78	80	10	5	5	5,2±2.5	8	5	45	5,6	2	0	7	3,5	
80	570	19	6	1250	65,8±20,3	7	0	1065	152,1	12	6	185	15,4	
Вс	его	40	17	-	20,9±14,0	26	11		38,2±28,5	14	6	-	9,5 <u>±</u> 5,9	

двустороннюю совместимость, при самооплодотворении функциональна только пыльца, несущая $S_{\mathfrak{t}}$ аллель [4, 5, 9, 12 и др.]. В соответствии с этим все потомство должно быть самофертильным, так как образуются генотипы $S_{\mathfrak{t}}^{\mathsf{S}}_{\mathfrak{t}}$ и $S_{\mathfrak{t}}^{\mathsf{S}}_{\mathfrak{t}}_{t}_{\mathfrak{t}}_{\mathfrak{t}}_{\mathfrak{t}}_{\mathfrak{t}}_{\mathfrak{t}}_{\mathfrak{t}}_{\mathfrak{t}}_{\mathfrak{t}}_{\mathfrak{t}}$

Все растения F_2 , полученные от искусственного самоопыления самофертильных особей F_1 , должны быть самосовместимыми (при условии, что функциональна только пыльца S_f). Самофертильные растения F_2 , давшие начало поколению F_3 , могли иметь генотип S_iS_f или S_fS_f . Очевидно, что оба генотипа при самооплодотворении должны привести к возникновению самофертильного потомства.

Однако полученные отношения и в F_2 , и в F_3 не соответствуют ожидаемым. Возможно, под влиянием S_f -аллеля в самооплодотворении принимает участие также пыльца с фактором S_i . Иначе говоря, пыльца гибридов glabratum×hirsutum показывает единую реакцию. Это значит, что пыльца с аллелями S_i и S_f имеет равную возможность принимать участие в самооплодотворении. В случае самооплодотворения F_1 и той и другой пыльцой в поколении F_2 на три самофертильных особи должна быть одна самостерильная. На самом же деле растения F_2 преимущественно самостерильные. Расщепление в F_2 гибридов glabratum×hirsutum на самосовместимые и самонесовместимые обна-

ружено также в опытах Мартина [13]. В наших опытах всего изучено 217 растений F_2 . Из них на самосовместимость проверено 182 растения. Из этого количества самосовместимыми были 63 растения, а самонесовместимыми—119. Значительную часть из 35-ти неанализированных растений, по-видимому, также следует относить к самостерильным. Основанием для этого служит то обстоятельство, что подобно многим самонесовместимым растениям неанализированные были бесплодны или малоурожайны. Считается, что слабая урожайность самонесовместимых растений здесь обусловлена относительной бедностью используемых выборок различными аллелями самонесовместимости (S_i).

Если даже допустить, что в самооплодотворении F1 в основном участвует только S_i-пыльца, то и тогда количество самонесовместимых растений не должно быть больше половины. В действительности же мы обнаруживаем значительный избыток класса самостерильных растений в F_2 , а в F_3 все растения оказываются самостерильными. Возможно, что в F_2 — F_3 не все $S_{\mathfrak{f}}$ -несущие растения обязательно оказываются самофертильными. Предполагается, что в определении уровня самосовместимости—самонесовместимости кроме локуса S участвует также остальной генотип гибридов. Допускается, что гибридные растения, имеющие в своем генотипе больше генетического материала hirsutum, будут проявлять реакцию самонесовместимости. Очевидно, определенную роль в проявлении реакции самосовместимости-самонесовместимости играет также инбридииг. Можно сказать, что F2 соответствует первому инбредному поколению, а F₃—второму. Депрессия инбридинга ранее обнаружена у glabratum [3], а hirsutum в основном вообще полностью самостерилен и, значит, относится к аутбредным формам. Понятно, что самоопыление гибридов glabratum×hirsutum приведет к более сильной инбредной депрессии, чем у glabratum. Гомогенизация гибридов по рецессивным генам под действием инбридинга, в особенности тех экземпляров, которые генотипически ближе к L. hirsutum, будет обусловливать падение плодообразования при естественном опылении и особенно при самоопылении. В результате часть гибридных растений, обладающих аллелем самофертильности $S_{\mathfrak{f}}$, будет проявлять эффект самостерильности. Следует поэтому предположить, что значительное численное превосходство самостерильных растений над самофертильными, может иметь место и в случае, когда при самооплодотворении гетерозиготы S_iS_i будет функционировать только пыльца с фактором S, .

Вследствие указанных причин полученные отношения самофертильных растений к самостерильным будут отклоняться от теоретически ожидаемых.

НИИ земледелня МСХ АрмССР

Поступило 6.VIII 1980 г.

ԻՆՔՆԱՀԱՄԱՏԵՂԵԼԻՈՒԹՅԱՆ ԺԱՌԱՆԳՈՒՄԸ LYCOPERSICON HIRSUTUM -Ի ՆԵՐՏԵՍԱԿԱՅԻՆ ՀԻՔՐԻԳՆԵՐԻ ՄՈՏ

Ա. Մ. ԱՂԱՋԱՆՅԱՆ

Ուսումնասիրվել են վայրի տեսակ L. hirsutum-ի ինքնահամատեղելի և ինքնաանհամատեղելի ձևերի խաչաձևումից ստացված հիբրիդների երկրորդ և երրորդ սերունդները։ F_2 սերնղում բույսերի մի մասը ինքնաֆերտիլ էինւ F_2 -ի բույսերի մեծ մասը և F_3 սերնդում անալիզված բոլոր բույսերը ինքնաստերիլ էին։ Ենժադրվում է, որ S_iS_i հետևրոլիգոտ բույսերի կողմից արտադրվող ծաղկափոշին ունի միատեսակ ռեակրիա, այսինքն S_i և S_i փոշետահրիները հավասար հնարավորություն ունեն մասնակցելու ինքնաբեղմնավորմանը։ Հնարավոր է նաև, որ S_iS_i հետևրորիգոտների ինքնաբեղմնավորման պրոցեսում կարող է մասնակցել միայն S_i ֆակտորով փոշին։ Ենթադրըսկում է, որ ինքնահամատեղելիություն ռեակ-

TSE INHERITANCE OF SELE-COMPATIBILITY IN INTRASPECIFIC HYBRIDS LYCOPERSICON HIRSUTUM!

A. M. AGHADJANIAN

 F_2 and F_3 hybrids received from crossing between two forms of wild species L. hirsutum-self-compatible glabratum and self-incompatible hirsutum has been studied. A part of plants in F_2 generation has turned to be self-fertile. A prevalent part of F_2 plants and all analysed planst of F_3 have been self-sterile. It is supposed that pollens of heterozygous plants $S_i S_f$ have similar reaction, i. e. the pollen grains with S_i and S_f allels have equal possibility to participate in self-fertilization. It is possible that under self-fertilization of heterozygotes $S_i S_f$ only the pollen with S_f -factor is functioning. It is supposed that a definite role in self-compatibility-self-incompatibility reaction plays inbreeding.

ЛИТЕРАТУРА

- 1. Агаджанян А. М. Генетика, 16, 3, 493-500, 1980.
- 2. Агаджанян А. М. Биолог. ж. Армении. В печати.
- 3. Навасардян Е. М., Агаджанян А. М. Биолог. ж. Арменин, 31, 8, 862—868, 1978.
- 4. Abdalla M. M. F. Vulagen vau Landbouw kundige Onderracinge, 748, 213, 1970.
- 5. Abdalla M. M. F., Hermsen J. G. Th. Euphytica, 21, 1, 32-47, 1972.
- 6. East E. M. Genetics, 4, 341-345, 1919.
- 7. Faberge A. C. J. Genet., 46, 125-129, 1944.
- 8. Grun P., Radlowe. Heredity, 16. 2, 137-143, 1961.
- 9. Hardon J. J. Genetics, 57, 4, 795-808, 1967.
- 10. Harrisen B. J., Darby L. A. Nature, 176, 982, 1955.
- 11. Herrmann H. Biol. Zbl, 92, 6, 773-777, 1973.
- 12. Lewis D., Growe L. K. J. Heredity, 12, 2, 233-256, 1958.
- 13. Martin F. W. Genetics, 50, 3, 459-469, 1964.
- 14. Pandey K. K. Amer. J. Bot., 49, 874-882, 1962.