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Abstract–In this paper we collect Paley–Wiener-type results for the scalar field in Friedman–Robertson–Walker 
spacetimes. These are then used to fulfill the functional analytical assumptions which the previously developed unified 
mode decomposition method is based upon. 

1. Introduction 

The synthesis of General Relativity and Quantum Field Theory is an open challenge in front 

of the mankind. From the quantum theory point of view the ultimate goal would be to have a 

quantum theory of gravity interacting with the remaining quantum fields. While there is no widely 

accepted successful theory of quantum gravity, there are several approaches, which tend to serve as 

approximations or germs of quantum gravity, including Quantum Field Theory in Curved 

Spacetimes (QFT in CST), Non-commutative Geometry (NCG), Strings, etc. The present exposition 

pertains to the first approach. The idea of QFT in CST is to consider the gravity as behaving 

classically (i.e., to neglect the possible quantum fluctuations of the gravity) and the quantum matter 

fields as propagating in the curved geometry created by the classical gravity according to General 

Relativity. The back reaction of the matter fields on the gravity is expressed by the semi-classical 

Einstein equation 

 8 ,G g T   
       

where G  and   are the Einstein tensor and the cosmological constant, respectively, and T 
 is 

the expectation value of the energy-momentum tensor of the quantum matter in the state   (note 

that as usual in Quantum Field Theory the Heisenberg picture is adopted). Such a semi-classical 

approach is applicable in the theoretical cosmology, especially for the early epoch of the Universe, 

when the curvature of the spacetime is sufficiently strong to noticeably influence the behavior of 

quantum fields, but its possible quantum fluctuations can be neglected. A good account of aspects 

of QFT in CST can be found in [1,2]. 

One remarkable property of cosmology is the symmetry of the Universe at large scale. 

Supported by observations cosmology considers mainly spatially homogeneous and often also 

isotropic spacetimes. This property of the Universe is particularly convenient from the analytical 

point of view, as it drastically reduces the variety of possible spacetimes under 

consideration. Homogeneous and isotropic cosmological models are described by the 
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Friedman–Robertson–Walker (FRW) spacetimes where a six-dimensional Lie group of isometries 

acts transitively on spatial sections. There are three type of FRW models distinguished by the 

isometry groups ;G  the closed model with  4 ,G SO  the flat model with  3G E  and the open 

model with  3,1 ,G SO  ( here means the identity component). The spacetime metric in FRW 

models is given by 

  2 2 ,a b
abds a t h x x    

where  a t  called the scale factor is a smooth strictly positive function which expresses the rate of 

the uniform expansion or contraction of the Universe, and abh  is the spatial Riemannian metric 

canonically associated to each of three types of models. One of the advantages of such a metric 

form is the separation of the time variable t  in the wave equation 

  2 0,m      

which describes the massive scalar field propagating in the curved spacetime. This separation in 

turn enables one to perform a mode decomposition of a solution   in terms of independent spectral 

modes. This procedure is the relative of the heuristic method of expansion of the field into harmonic 

oscillators, and is achieved by a time-dependent Fourier transform. Roughly speaking, this amounts 

to examining the evolution of distribution of energy among different spectral modes of the field 

through the time. This decomposition is a very powerful analytical tool especially for explicit 

constructions. The first application of the method of mode decomposition in the cosmological 

context can probably be attributed to L. Parker [3], who performed it on the flat FRW spacetime 

and demonstrated a couple of interesting results. His derivations, however, were not carried out in 

complete mathematical rigor. A rigorous treatment of mode decomposition of strong solutions of 

the field equation in FRW spacetimes appeared in [2] and has been used by many authors 

afterwards [4,5]. But such problems as the mode decomposition in non-FRW spacetimes, for higher 

vector fields and for weak (distributional) solutions of the field equation remained open until 

recently. In [6] (see also [7,8]) we undertook the task of developing a unified mode decomposition 

method which solves all the above mentioned problems. The theory is almost complete in 

describing the method in its utmost generality in precise mathematical terms. However, it depends 

on a few conjectures which are intuitively expected but reduce to open problems in modern 

mathematics. The problems are mainly related to the explicit description of the image of different 

function spaces under the Fourier transform. Such results are usually called Paley–Wiener theorems 

and represent a major topic in harmonic analysis. 

To complete the program of mode decomposition pursued in [6] one needs to prove the 

conjectures for all possible models. This is an extensive task, because the methods of harmonic 
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analysis differ dramatically for various geometries. In this paper we will show how these 

conjectures can be satisfied in case of the scalar field in FRW spacetimes. 

2. Paley–Wiener-Type Results of the Scalar Field on FRW Spacetimes 

Here we will present the necessary results in very explicit terms. Although no major proof or 

computation is involved, but the explicit answers to these problems seems not to be available in the 

literature at least in the cosmological context. 

Let us start with the closed FRW model. Its spatial section   is  2SU  with the canonical 

 4SO -invariant Riemannian metric and the associated Laplace operator .  The eigenfunctions of 

  are spherical harmonics   with ( , , ),k l m   0 l k   and 2 ,m l  ,l m  0.k  The 

eigenvalues are 

  2 .k k       

The spectral Fourier transform is given by 

   , ,f f 
      

where 

    , .
M

f h dxf x h x      

We are interested in the images    and    of function spaces    and    under this 

Fourier transform, respectively. Because  2SU  is compact,     ,     we only need to 

examine the smoothness property. It turns out that    is the space of functions  , ,f k l m  which 

are of rapid decay in .k  This can be seen, for instance, from the observation that on a compact 

manifold a function is smooth if and only if it is 2L  along with all powers of   acting on it. 

Next we go on to the flat FRW model, of which the spatial section is 3    with the 

canonical  3E -invariant Riemannian metric and the associated Laplace operator .  The 

eigenfunctions are the usual exponentials 

    3 2 ,2 ,ie   k x    3,  k     

and the eigenvalues are 

 
2   k    

({,} is the Euclidean product). By classical Paley–Wiener theorems we have that    is the space 

of entire (in each variable) functions on 3  which are of rapid decay on the real line and of finite 

exponential type. Turning to    we must say that its straightforward characterization is very 
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difficult because of unpredictable behavior at infinity. We may instead realize    as the dual 

space to the space of Fourier transformed distributions of compact support, 

    


.


     
    

By another classical theorem (Theorem IX.12 in [9]) we have that the Fourier transform of a 

distribution of compact support is an entire function in each variable on 3  which is polynomially 

bounded on the real line and has finite exponential type. The Fourier transformed smooth functions 

are thus linear continuous functionals on this function space. 

Finally let us turn to the open FRW model having spatial section  Bi V   (the Bianchi V 

group) with the canonical  3,1SO -invariant Riemannian metric and the associated Laplace 

operator .  Each such section is a 3-dimensional real hyperbolic (or otherwise called real 

Lobachevsky) space. In [6] we have suggested to slightly modify the eigenfunctions given in [10] to 

comply with the definition of a conventional Fourier transform. This is not only technically 

convenient for the aims of [6], but we will shortly see that this is precisely the form which comes 

from the general theory of symmetric spaces. We will again adhere to this convention. Take 

  2, ,k S      and let 

     13 21 4 , ,
ik

  x x η    

where 2S  is considered as embedded in 3.  The eigenvalues are 

  2 1 .k       

Paley–Wiener theorems for the hyperbolic space are relatively new matters, and we will use the 

results suggested by the geometric theory of symmetric spaces. In terminology of [11], 

 3,1 ,G SO   3K SO  is a maximal compact subgroup, and G K   (Helgason uses X  

instead of ).  The Iwasawa decomposition of G  can be inferred from [12]. Namely, ,G K AN  

where the Abelian subgroup  1,1A SO  and N  is a normal subgroup. The stabilizer of A  in K  is 

 2 ,M SO  and the normalizer of A  in K  is    2 2 ,M SO g SO    where g  is a special 

element. Thus the Weyl group W M M  is isomorphic to the group  .1  The Lie algebra of the 

Abelian subgroup A  is , a  and the adjoint action   :Ad g  a a  of the nontrivial element g  

of the Weyl group on a  can be easily found: it is the inversion a a  on .  Thus the left action 

of the Weyl group W  on the dual a  in the sense of [11] is again the inversion. Now look at 

Theorem III.5.1 in [11]. Fourier transform in this theorem is precisely our Fourier transform with 

substitutions 1    and    , ln ,A x η x η  (in fact, historically the integral geometry of classical 
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spaces like Lobachevsky space have served as the starting point for the analysis in general 

symmetric spaces). The integral symmetry condition in the definition of the space  
W

B a  is 

precisely the integral condition we had in [6] but now in more abstract terms. At last we find from 

the theorem that    is the space of smooth functions  ,f k η  entire in ,k  of rapid decay on the 

real line and of finite exponential type, satisfying the integral symmetry condition. We turn now to 

the Fourier transform of smooth functions which we again identify with the dual space of the 

distributions of compact support, 

    


.


     
    

Use Corollary III.5.9 in [11] to establish that  
   
  is the space of smooth functions  ,k η  

entire in ,k  of polynomial growth on the real line and of finite exponential type, satisfying the 

integral condition. This space has a locally convex distributional topology, and the desired space 

   is its dual space. 

3. The Fulfillment of Conjectures 

We start with the first conjecture of [6,7] (which is assumed rather than explicitly stated) that 

the time-dependent Fourier transform in all cosmological models is conventional. For the scalar 

field the dimension of the bundle dim 1,V n   and we indeed see that the Fourier space   is 

either discrete (closed FRW model) or a connected analytical manifold (flat and open FRW 

models). This verifies point (i). Next, in all three models   is an analytic function of .k  On the 

closed model, where   is discrete, analyticity is vacuous, and we formally call it analytic. 

Otherwise k  is a coordinate in the analytic global chart on the manifold .  Thus point (ii) is also 

satisfied. Point (iii) is a direct consequence of the Paley–Wiener results given above. Finally point 

(iv) follows immediately from the definition of the eigenfunctions .  

Next we observe that in FRW models the Schrodinger operator 
t

D  has a strictly uniform 

spectrum [6,7]. Indeed, because the spatial metric at any time t  is given by 

    2 ,ab abh t a t h    

it follows 

         2 20 0 ,t a a t      

whence 

         2 2 2 20 0 .t a a t m m          
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We turn to the important property (1.19) in [6] (or (2.19) in [7]). Namely, we need to choose 

the mode solutions  T t  so that 

       ,f T t       ,t        .f       

For the closed FRW model,  f   is merely a function on   which is of rapid decay in .k  Thus it 

suffices to choose modes  T t  such that they are polynomially bounded in k  uniformly on any 

time interval .R    By Proposition 1.4 in [6] (Proposition 2.4 in [7])) it suffices to choose the 

initial data  0T  and  0T
  to be polynomially bounded in .k  For flat and open FRW models 

 T t  also need to be entire in k  for all t  (actually, for the open model one needs also the solutions 

 T t  to satisfy the integral symmetry condition). If the scale factor  a t  is not a real analytic 

function, then the mode equation (1.16) in [6] ((2.16) in [7]) is a smooth ordinary differential 

equations depending holomorphically on the parameter .k  If we choose also the initial data  0T  

and  0T
  as entire functions of ,k  then it will be reasonable to expect that the solutions will also 

depend holomorphically on k  for all .t  While this has been proven in the case of an analytic scale 

factor (Proposition 1.5 in [6] or Proposition 2.5 in [7]), for the case of a smooth scale factor  a t  

this remains unproven so far. 

A short notice should be made concerning the choice of the global time function. In the 

section “Spatially homogeneous cosmological models” of [6,7] we assumed that the time function is 

chosen so that the orbits of the isometries are precisely the equal time hypersurfaces. This is 

obviously true for FRW models. 

Finally we come to the Hadamard property. By Remark 4.3 in [6] the problem of checking the 

Hadamard property of a state   reduces to the smoothness of the bi-distribution 2.s  This in turn 

reduces to determining the Fourier transforms of smooth distributions. As we have done this above 

for the scalar field on FRW spacetimes, the question can be answered exhaustively for this case. 

We conclude by noting that the fulfillment of these properties for non-FRW models is a way 

more complicated a task mainly because of the absence of corresponding Paley–Wiener-type 

theorems. For Bianchi II-VII models this is a work in progress and we hope to be able to announce 

new results in the near future. 
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