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Abstract–Radiation damping rate of surface plasmon oscillations in spheroidal core-shell noble metal nanoparticles is 
calculated analytically. It is shown that the rate drastically decreases with decrease in the shell thickness. Calculation 
shows that, as in case of nanospheres, the radiation damping rate is proportional to the number of radiating electrons, 
i.e. to the shell volume. This result can be used in designing nanophotonic devices requiring narrow surface plasmon 
resonances. 
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1. Introduction 

For relatively large metallic nanoparticles (MNP) (with radii ~20 nm and more) the main 

limiting factor of spectral sensitivity is the radiation damping of surface plasmon (SP) oscillations. 

The radiation linewidth of SP spectrum in a spherical MNP is proportional to its volume [1], which 

makes difficult using the particles with sizes more than 20 nm in nanophotonics. This circumstance 

stimulates studies directed to find the ways for suppressing the SP radiation damping [2]. In this 

respect hollow MNPs could be good candidates if the radiation damping rate (RDR) of SP 

oscillations is proved to be small. It is demonstrated that SP RDR in spherical noble metal 

nanoshells is drastically suppressed as compared to the solid nanosphere of the same outer radius 

[3]. As it is shown, strong suppression of the RDR by up to two orders of magnitude takes place 

when shell thickness decreases only by 5–6 times. This behavior is a result of two circumstances: 

a) strong redshift of SP frequency ωsp  with decrease in the shell thickness, b) rapid raise of 

dielectric function of the metal with decrease in the SP frequency.  

It is well known that nanoparticles of spheroidal shape often occur during the chemical 

synthesis [4]. For this reason it is of great interest to investigate the RDR dependence on the 

parameters of spheroidal nanoparticles. Note that in this case there are two degrees of freedom for 

tuning as compared to the spherical shape where there is only one free parameter. Indeed, for the 

spheroidal shape besides the shell thickness there appears the aspect ratio of nanoshell as well [5]. 

In this paper the RDR of longitudinal SP oscillations in noble metal prolate spheroidal nanoshells is 

calculated and is compared with the case of spherical nanoshells. 

2. Calculation of SP RDR in Spheroidal Nanoshell 

The calculation is carried out using the algorithm developed for specific systems that contain 
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regions with different dielectric constants [6]. We consider particles with size much smaller than the 

wavelength of emitted light 2 R   allowing application of the quasistatic approximation. 

According to Eqs.1 and 2 of [3] the RDR   in this approximation can be expressed as 

  4 2 3
33 ,sp c W   p  (1) 

where sp  is the SP frequency, p  is the amplitude of the dipole moment of the particle, W  is the 

electrostatic energy of the particle, 3  is the dielectric constant of the environment, c  is the speed 

of light. Thus the problem of determining   is reduced to calculating W  as a function of the dipole 

moment .p  This procedure in the case under consideration can be carried out by solving the 

electrostatic boundary problem for the two interfaces: core-shell and shell-environment. We denote 

the electric field potentials in the core, shell and environment regions correspondingly by 1,  2  

and 3.  Introducing the dielectric constant of the core 1(ε )  and the dielectric function of the 

metallic shell  ( )   in the absence of the external field, we come to the boundary conditions for 

the first and second interfaces in the following form: 

   1 2 1 1 2 12, grad grad 0,         n  (2) 

   2 3 2 3 3 23, grad grad 0.         n  (3) 

Herein, 12n  and 23n  are the unit vectors of normal directed from the core to the shell and from the 

shell into the external medium, respectively. Note that the values of     for the noble metals are 

known from the experimental data of [7].  

Since the solution of the boundary problem is well known [8], we present only some 

expressions in order to clarify our notations. Introducing spheroidal coordinates   and   defined 

according to [9], we seek the potentials in the three regions in the form of expansion in terms of 

Legendre functions: 

                1 1 1 2 1 1 1 1 3 1 1, , ,aP P bP P cQ P dP Q                (4) 

where  1P    and         1 2 ln 1 1 1Q         . Substituting 1,  2  and 3  into the 

boundary conditions (2) and (3), we obtain homogeneous set of equations for coefficients ,a  ,b  c   

and .d  Then the requirement of nonzero solution of the system reads 

 
         

             
3 1 2 2 12 2

1 3 2 1 1 1 1 12 2 1 1 0,

Q Q

Q Q Q Q

          

             
 (5) 

which determines the SP frequencies of the spheroidal shell [4].  

We define the energy of the nanoparticle and its dipole moment, taking into account that the 
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charge arises only on the interfaces. Then the electrostatic energy equals  

 12 1 12 23 3 23

1 1
,

2 2
W dS dS         (6) 

where 12  and 23  are the surface charge densities on the core–shell and the shell–external medium 

boundaries, respectively. These quantities can be derived using the boundary conditions (2) and (3) 

on the spheroidal surfaces 1    and 2    with equal interfocal distances 2 f  in the form  

 
     

 
2 2

1 3 21 2
12 232 2 2 2

2 1 2

1 1
, .

4 4

a Q d

f f

            
   

      
  (7) 

Substituting the expressions for the surface charge densities into (6), we obtain the electrostatic 

energy in the form 

 
 

 
           

   
2

3 1 2 3 2 1 22 22
2 1 2 1 2 2

1 1 1 1 1 1

1
1 1

6 1

Q Q
W f Q Q d

Q Q

                            
. (8) 

For the amplitude of the total dipole moment of the core-shell particle we come to the following 

expression: 

  2
12 1 12 23 2 232 2 3 .p f dS f dS f d            (9) 

Finally, the RDR is obtained in the form 

 
 

       
     

     

14 3 2
3 1 2 3 2 1 22

3 22
1 1 1 1 1 1 13 2 1 2 1 2

2 1
1 .

9 11
sp f Q Q

c Q QQ Q


           

                    
 (10) 

As it expected expression (10) is reduced to the SP RDR of spherical nanoshell when interfocal 

distance 2 f  tends to zero and spheroids are transformed into spheres (see [3]). In this limit 

1,2 1,2R f   where 1R  and 2R   2 1R R  are the radii of the inner and outer spheres. Naturally, for 

a bulk spheroid the expression (10) transfers into the result of [10], e.g.,   is proportional to the 

particle volume. In case of bulk sphere we have from (10) the well-known result of [1]: 

    3

sphere 32 3 sp spR c      (11) 

where R  is the radius of the sphere. 

3. Results and Discussion 

As it follows from numerical evaluation of (10) the RDR drastically decreases with decrease 

in the shell thickness analogously to the results for spherical nanoshell [3]. It is obvious that when 

the aspect ratio of the particle is kept constant the physical reason of reduction of RDR with 

decrease in the shell thickness is the decrease in the number of radiating electrons. Another 

important result is that appearance of an additional parameter in RDR as compared to sphere – 

aspect ratio of spheroid opens new possibility for tuning SP resonance frequency and the linewidth. 
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In Fig.1 we present the dependence of RDR of spheroidal shell on the shell volume, i.e. the 

number of radiating electrons. As seen, the decrease in the shell volume resulted in the strong 

decrease in RDR. 

It is important to note that, as it is shown in [11], the electron-phonon interaction in thin 

metallic films is also suppressed due to size quantization of phonon spectra. Thus in the nanoshell 

the resulting linewidth of SP resonance, conditioned by the Drude relaxation and radiation damping, 

is drastically decreased as compared to the bulk nanoparticle of the same size. This interesting 

feature makes nanoshells attractive for applications in photonics and nanooptics. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Dependence of RDR of a spheroidal shell on its volume. 
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