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Abstract–The problem of X-ray free-electron laser operating on self-amplified spontaneous emission in irregular 
microundulator is considered. The case when the spectrum width of spontaneous radiation is conditioned by the spatial 
distribution of sources creating the undulating field is considered. In this case gain function of the stimulated radiation 
is dozens of times higher than that of the conventional undulators. We propose a model of irregular microundulator, 
which can be used to construct a drastically cheap and compact X-ray free-electron laser operating on medium energy 
electron bunch. 

1. Introduction 

Generation of powerful photon beams in different frequency ranges due to its wide field of 

applications in physics and other science disciplines such as biology, chemistry, material science, 

etc. is one of the biggest challenges in modern physics. For that purpose alongside with the 

traditional lasers so-called free-electron lasers (FEL) are also being widely used due to their well 

known features such us tunability on every required wavelength. The idea to use FELs to generate 

powerful photon beams [1] was first realized in amplification regime during the experiment [2] and 

in generation regime during the experiment [3]. Photon beam with 109 nm wavelength was 

generated at Tesla test facility for free-electron laser experiments (TTF FEL) at DESY using 

electron bunch with 233 MeV energy and operating on self-amplified spontaneous emission (SASE) 

[4]. Photon beam with a 1.5 Å wavelength was generated using 13.6 GeV energy electron bunch of 

the Stanford linear accelerator center’s linac coherent light source X-ray FEL (SLAC LCLS XFEL) 

again using SASE [5]. 

Even though modern FELs solve the problems posted in front of them, they are still very big 

and expansive devices. The reason is that to create necessary for the applications short wavelengths 

one must either put the undulator magnets close enough to each other, which still is a big practical 

challenge, or to use high-energy electron bunches (see, for example, [6] or [7]). 

As a result we have FELs with very big sizes and very high maintenance costs. Of course 

there are steps towards the development of FEL which will be compact in its sizes and will operate 

with low-energy electron bunches. As an example one can mention the letter, where the authors 

propose a FEL which is based on the higher harmonics of the spontaneous radiation of the 3.5 GeV 

energy electron bunch in FEL oscillator. 
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In this paper we announce about the possibility of an efficient (i.e. cheap and compact 

compared with the existing ones) FEL based on an undulator with randomly varying spatial period 

which is in order of several micrometers. Hereafter we will refer to such an undulator as “irregular 

microundulator”. One can imagine the irregular microundulator as a set of charged needles placed 

parallel to each other with random distances between two adjacent needles in order of few 

micrometers. The electron bunch, being shot in direction perpendicular to the needles into the 

inter-needle space, will be repealed by the charged needles and perform an irregular undulatory 

motion. We will show that the practical realization of such a microundulator will allow constructing 

significantly cheap and compact FEL. 

In the past the problem of electron radiation moving along irregular periodic paths was solved 

in the work, where the radiation from non-relativistic electrons conditioned by the interactions with 

randomly distributed roughness of the metallic surface was considered. A Smith–Purcell type 

radiation [10] spectrum was obtained which allowed explaining the anomalously high intensity in 

the transition radiation experiments [11,12] from non-relativistic electrons grazing into metallic 

surfaces. 

2. The Physical Model 

In this problem one should choose the mean transversal distance between adjacent needles to 

be in order of magnitude of the mean distance between electrons in the bunch. The longitudinal 

distance should be chosen from the requirement to obtain photon beam with the given wavelength. 

The needles should be many times longer than the transversal size of the bunch. 

In such a microundulator bunch electrons propagating in z  direction, being repealed from the 

charged needles will oscillate in the xz  plane in the x  direction. Let us assume the electron 

trajectories consisting of sinusoidal curves with amplitude b and spatial semiperiod :l  

( ) ( )sin .x z b z l= π  Such a trajectory is presented in Fig.1. From the condition of trajectory 

smoothness it follows that const,b l ⊥π = β β =  where c⊥β  is the maximal speed of the electron in 

the x  direction, c  is the speed of light in vacuum, cβ  being the mean speed in the z  direction. 

Because the oscillations in the x  direction are accompanied by the oscillations in the z  direction, 

for the mean square root of β  one will get 2 2 2 2,⊥β = β −β  where β  is assumed to be constant 

 (we neglect the small energy losses conditioned by the radiation). From here it also follows that the 

undulator parameter q ⊥= β γ β  of the electrons moving along trajectories with random spatial 

semiperiods is a constant quantity ( ( ) 1 221
−

γ = −β  is the Lorentz-factor). Hence for the 

Lorentz-factor conditioned by the longitudinal motion one can get: ( ) 1 22 2 21 ,Q
−

γ = −β = γ  where 

21 2.Q q= +  
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Fig.1. The path of the electron. 

 

Since the bunch electrons are indistinguishable from each other one can assume that each 

electron moves not along a trajectory which is made up from the embroidering of sinusoidal 

trajectories with different spatial semiperiods, but along a sinusoidal trajectory with unique spatial 

semiperiod .l  However, this assumption implies that the different electrons move along trajectories 

with different spatial semiperiods. As a consequence of the finiteness of the number of electrons in 

the bunch, l  is being a discrete quantity, but in our problem this discrete quantity can be considered 

as a continuum quantity, which obeys to the gamma distribution law. It is convenient to use the 

gamma distribution for the t l l=  parameter, where l  is the mean value of the spatial 

semiperiods .l  This distribution is presented in the Eq.(1): 

 ( ) ( )1, , 0.a a atf a t a t e a a− −= Γ >  (1) 

Here the scaling parameter of the distribution is taken to be equal to the parameter a  which is the 

dispersion of the distribution and is conditioned by the non-regularity of the spatial semiperiod 

distribution. Since 1t =  the degree of non-regularity η  is being determined from the parameter 

:a  2 1 .t aη = Δ =  

In Fig.2 gamma distribution curves for different values of a  are presented. 

 

 

 

 

 

 

 

 

 

 

Fig.2. Gamma distribution for different values of :a  1) 50,a =  2) 25,a =  3) 10.a =  
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3. Radiation Characteristics 

The radiation characteristics of the electron bunch are obtained by averaging the 

corresponding characteristics of the single electron radiation. 

It is known that the radiation spectrum width is conditioned by the energetic and angular 

divergence of the bunch electrons, as well as by the finiteness and non-regularity of the electron 

motion. In the most of the cases the angular divergence is negligible in comparison with the 

energetic divergence. In such a case the radiation spectrum width is being calculated from Eq.(2) 

[13]: 

 
1 2

2 2 ,l
L

⎡ ⎤⎛ ⎞Δω Δγ
≈ + +η⎢ ⎥⎜ ⎟ω γ⎝ ⎠⎣ ⎦

 (2) 

where L  is the length of the metallic plate. 

Let us consider the case when the spectrum width is mainly conditioned by the random 

distribution of the quantity l  ( , 2l Lη Δγ γ ). 

We should note that during the radiation process of the relativistic electron the energy and 

momentum conservation laws allow radiation only under the small angles ( 1 1θ γƒ ). In such a 

case for the angular-frequency distribution of the number of photons radiated from a bunch electron 

which moves along a trajectory with a spatial period ,t  in the dipole approximation ( 1q ⊥= β γ < ), 

switching to u = θγ  angles and 2X l c= ω π γ  dimensionless frequencies we can get: 

 ( ) ( )
2 22 2

2

21 1 ,d N BX tXu X Q u
dXdu t

⎛ ⎞⎡ ⎤= + − δ + −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
 (3) 

where 2 8,B nq= πα  α  is the fine structure constant and n L l=  is the doubled number of 

electron oscillations along the distance .L  

To obtain the frequency distribution of the radiated photons one needs to integrate the Eq.(3) 

with respect to 2.u  After the integration one has the Eq.(4). 

 ( )21 1 .dN dX B QXt⎡ ⎤= + −⎣ ⎦  (4) 

To obtain the frequency distribution from the electron bunch one needs to average the Eq.(4) 

by multiplying it by the gamma distribution given in Eq.(1). Since the argument of the 

delta-function in Eq.(4) should has a possibility to vanish, we can get a relation between t  and :X  

2 .t X≤  This is natural since it states that the harder photons are radiated by the electrons moving 

along trajectories with smaller spatial periods. Using this fact one gets for the frequency distribution 

of the radiation from the bunch: 

 ( ) ( )
2 2

0
, 1 1 ,

QXb
el

dN BN f a t QXt dt
dX

⎡ ⎤= + −⎣ ⎦∫  (5) 
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where elN  is the number of electrons in the electron bunch. In Fig.3 the bunch radiation frequency 

distribution curves are presented for different values of a  (the parameter Q  is taken to be equal to 

unity). 

As it is easy to conclude from Fig.3, at the hard frequency region the spectrum drastically 

differs from the regular case. 

Let us mention that Eq.(3) in case of the regular motion ( 1t = ) coincides with Eq.(11) of the 

work [14] in the case of vacuum ( 1σ = ), if we take 1.Q =  One can also mention that instead of 

Eq.(14.114) of the book [15] it is more precise to use Eq.(3). 

A topic of special interest is the frequency distribution of the number of photons radiated 

under the zero angle which uniquely defines the gain of the stimulated radiation. 

Substituting 0u =  in Eq.(3) one obtains Eq.(6) for the frequency distribution of the number of 

photons radiated under the zero angle from a single electron, which moves along a trajectory with a 

spatial period :t  

 2
0

4 2 .
u

dN B t
dX Q X QX=

⎛ ⎞
= δ −⎜ ⎟

⎝ ⎠
 (6) 

 

 

 

 

 

 

 

 

 

 

Fig.3. Frequency distribution of the bunch radiation for the regular case and for different values of :a  1) Eq.(4), 
2) 50,a =  3) 2.a =  

 

For the frequency distribution of the number of photons radiated under the zero angle from 

the electron bunch we have: 

 
( )( ) ( )

( ) ( )
0

2 , ,

, , 2 .
b elu

a Y

dN dX BN Q a F a X

F a X Y e a Y a QX
=

−

= Γ

= Γ =
 (7) 

In Fig.4 the zero-angle bunch radiation frequency distribution curves are presented for 

different values of a  (the parameter Q  is taken to be equal to 1). 
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Fig.4. Frequency distribution under the zero angle for different values of :a  1) 50,a =  2) 25,a =  3) 10.a =  

4. X-Ray SASE FEL in Irregular Microundulator 

Following the work for the linear gain from the interaction length L  of the stimulated 

radiation of the electron bunch with an electron density ρ  we derive: 

 ( ) ( ) ( )
( ) ( )

3 2 2 3
0 0 0, , , 2 ,

, , ,

G a X G g a X G q L r

g a X X F a X X

= = π ρ γ

= − ∂ ∂

 (8) 

where 13
0 2.8 10r −= ×  cm is the classical radius of electron. 

 

 

 

 

 

 

 

 

 

 

Fig.5. Function ( ),g a X  for different values of :a  1) 50,a =  2) 25,a =  3) 10.a =  

 

So, the gain in case of a non-regular microundulator is defined by the function ( ), .g a X  The 

plot of this function for different values of a  is shown in Fig.5. Let us mention that the function 

( ),g a X  for realistic values of a  is in order of magnitude higher compared with the regular 

undulator case. 
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Taking into account the rapid growth of the nanotube technology we propose carbon 

nanotubes as repealing needles for the discussed microundulator. Carbon nanotube is a huge 

molecule of carbon rolled into a cylinder with a radius of few nanometers and with a macroscopic 

length [17,18]. We hope that in the near future it will be possible to develop an irregular nanotube 

super-lattice placed between two parallel charged metallic surfaces, which can serve as a 

microundulator. The reason of such a hope is already existing technology of producing nanotube 

forest [19]. 

5. Discussion 

Now let us calculate the gain for the parameters of the TESLA Test Facility for FEL 

Experiments [4]. As a microundulator for the FEL we propose to use a super-lattice which is made 

of nanotubes, where the mean distance between adjacent nanotubes in direction of the bunch motion 

is in order of 2
max 2,l X= λγ  where λ  is the wavelength of the radiated photon and at maxX  the 

function ( ),g a X  achieves its maximal value. From Fig.5 it is seen that max 2.3.X =  The mean 

distance between adjacent nanotubes in the transversal direction is in order of 1 3.−ρ  The energy of 

the bunch is 233E =  MeV ( 24.6 10γ ≈ × ), the number of electrons in the bunch is 1010 ,  the 

transversal size of the bunch is 210−  cm (therefore the nanotubes should be 110 1− −  cm long). 

Taking for the longitudinal size of the bunch 210−∼  cm, for the electron density we get 
1610ρ =  cm−3. If 33.6 10l −= ×  cm ( 1.5λ =  Å) and the electric field amplitude near the nanotubes 

is 55.5 10F = ×  CGSE units, then for the undulator parameter one gets 42 10 0.4.q l F−≈ × ≈  For 

the irregularity of 0.14η ≈  ( 50a = ) the function ( ),g a X  achieves its maximum value, 

( ), 11.5,g a X ≈  at the frequency max 2.3.X =  

As can be noted from Eq.(5), for the photons of energy 8.3 KeV ( 1.5λ = Å) the linear gain 

from the 10L t  cm length of the path takes a value bigger than 1. For smaller values of the electric 

field around the nanotube needles, the gain can be increased by choosing longer plates.  

6. Conclusion 

We propose a compact X-ray Free-Electron Laser (CXFEL) operating on SASE regime, 

which uses medium-energy electron accelerator and few centimeter long non-regular 

microundulator. In case of overcoming the technical difficulties of creation of such a 

microundulator it is possible to generate 8.3 KeV energy photon beam from 10 cm length of the 

interaction path, using TTF FEL’s 233 MeV energy electron bunch instead of SLAC’s 13.6 GeV 

energy electron bunch. 
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