КРАТКИЕ СООБЩЕНИЯ

УДК 576.3 083

ДЕИСТВИЕ МОДИФИКАТОРОВ НА ЦИТОГЕНЕТИЧЕСКИЕ ПОВРЕЖДЕНИЯ, ВЫЗВАННЫЕ ДИПИНОМ В КУЛЬТУРЕ ЛИМФОЦИТОВ ЧЕЛОВЕКА

Г. Г. ЗАЛИНЯН, Г. Г. БАТИКЯН, С. Г. МИКАЕЛЯН

До последнего времени исследование ряда химических соединениймодификаторов, снижающих уровень цитогенетических повреждений, вызванных мутагенами, было проведено на одноцентровых мутагенах [1, 2]. Применявшиеся в этих исследованиях модификаторы обладали защитным эффектом по отношению к одноцентровому мутагену тио-1ЭФ, введенному в культуру лимфоцитов человека.

Нами ранее было изучено действие модификаторов на цитогенетические повреждения, вызванные двухцентровым дипином при введении его в культуру лимфоцитов на стадии g₂ клеточного цикла [5].

В связи с этим возник интерес к изучению действия модификаторов при обработке культуры лимфоцитов дипином на стадии g₂—S клеточного цикла.

Материал и методика. В опытах использовали кровь клинически здоровых доноров. Культивирование крови проводили по общепринятой методике Хангерфорда [6]. В качестве мутагена использовали двухцентровый динии, противоопухолевый препарат, который вводили на стадии g—S клегочного цикла, на 28-м часу культивирования. Экспозиция действия 1 час, после чего мутаген отмывали. Динии вводили в культуру в концентрациях 10 3 5 10 5, 10 10 5, 10 10 5, 20 10 3 25 10 5, 30 10 5 М.

В качестве модификаторов использовали цистафос и его аминоалкильное производнос—аминопропиламиноэтплинофосформую кислоту 2,3 (АПАЭТФ 2.3), относящиеся к классу индолилалкиламинов и зарекомендовавшие себя в качестве эффективных протекторов [4]. Их вводили на 29-м часу культивирования в эквимолярной концентрации 10 -4 М. Фиксацию проводили на 58-м часу.

Отбор метафазных пластинок и учет хромосомных аберраций проводились по общепринятому методу [3].

Результаты и обсуждение. Проверка достоверности защитного эффекта указанных модификаторов методом X^2 показала, что начиная с концентрации дипина $10\cdot 10^{-5}$ М оба модификатора достоверно снижают процент клеток с аберрациями хромосом. Как видно из таблицы, при концентрации дипина $10\cdot 10^{-15}$ М в вариантах дипин+цистафос наблюдается 5% аберрантных клеток, дипин+ Λ ПАЭТФ 2.3-2.8%, в то время как при воздействии той же концентрацией без модификаторов количество аберрантных клеток достигает 16% ($X^2=13,191$ P<0.001, $X^2=6,438$ P<0.05).

Достоверное снижение процента хромосомных аберраций наблюдается начиная с концентрации дипина $15 \cdot 10^{-5}$ М. При концентрации $20 \cdot 10^{-5}$ М отмечалось соответственно 31% аберрантных клеток в вариантах без модификаторов против 5 и 10% в вариантах дипин+ АПАЭТФ 2.3 и дипин+ цистафос ($X^2 = 22.899$ P< 0.001), $X^2 = 13.521$ P< 0.001).

При той же концентрации дипина наблюдалось соответственно 6 и 11% хромосомных аберраций в вариантах с модификаторами против 38% в вариантах с дипином.

Таблица Модифицирующее действие АПАЭТФ 2,3 (10 $^{-4}$ M) и цистафоса (10 $^{-1}$ M) при обработке культуры лимфоцитов человека разными концентрациями дипина (стадия \mathbf{g}_1 —S)

Вид обработки	Число просмотрен- ных клеток	Аберрантные клетки		Хромосомные аберрации	
		Bcero	9/0	всего	на 100 кле-
Д (10 ⁻⁵ М)	100	3	3	3 2 3	3
+ АПАЭТФ 2,3	100	2	2		2
- ЦФ	100	3	3		3
Д (5·10 ⁻⁵ М)	10)	13	13	14	14 6
+АПАЭТФ 2·3	1(,0	6	6	6	
+ЦФ	100	4	4	4	
Д (10·10 ⁻⁵ M)	100	16	16	18	18
+АПАЭТФ 2,3	140	+	2,8	6	4,2
+ЦФ	1, 0	5	5	6	6
Д (15·10 ⁻⁵ М)	100	27	27	35	35
+ АПАЭТФ 2,3	10.)	6	6		7
+ ЦФ	100	7	7		7
Д (20·10 ⁻⁵ М)	100	31	31	38	38
—АПАЭТФ 2,3	100	5	5	6	6
—ЦФ	100	10	10	11	11
Л (25·10 ⁻⁵ М)	100	34	34	42	42
+ АПАЭТФ 2,3	100	14	14	23	23
+ЦФ	115	13	11,3	13	11,3
Д (30·10 ⁻⁵ М)	100	25	25	30	30
- АПАЭТФ 2,3	100	11	11	15	15
+ ЦФ	100	11	11	15	15

Таким образом, выявлено. что при действии модификаторов цистафоса и ЛПАЭТФ 2,3 на цитогенетические повреждения, вызванные многоцентровым мутагеном дипином, наблюдается такая же зависимость, как и при модификации эффекса одноцентровых мутагенов—с возрастанием концентрации мутагена наблюдается все большее синжение эффекта мутагена в вариантах, обработанных модификаторами.

Полученные данные свидетельствуют об определенной неспецифичности эффекта модификаторов в зависимости от вида мутагенов.

Греванский государственный университет, кафедра генетики и цитологии

Поступило 12.VII 1979 г.

ՄԱՐԴՈՒ ԼԻՄՖՈՑԻՏՆԵՐԻ ԿՈՒԼՏՈՒՐԱՅՈՒՄ ԴԻՊԻՆԻ ԿՈՂՄԻՑ ԱՌԱԶԱՑՐԱԾ ՔԶԶԱԳԵՆԵՏԻԿԱԿԱՆ ԽԱԹԱՐՈՒՄՆԵՐԻ ՎՐԱ ՄՈԴԻՖԻԿԱՏՈՐՆԵՐԻ ԱԶԳԵՑՈՒԹՅԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ

ց, գ, ցայթնչան, Հ, գ, թաչթեման, Ս, գ, ՄԻՔԱՅԵԼՏԱՆ

Ուսումնասիրվել է ԱՊԱԷԹՖ 2,3-ի ցիստաֆոսի մոդիֆիկացիոն հատկությունը մարզու լիմֆոցիտների կուլտուրայում «երկկենտրոն» դիպինի ազդեցության դեպբում՝ բջջի բաժանման G₁-Տ ստադիայում։

Ցույց է տրված, որ ինչպես «մոնոկենտրոն» այնպես էլ «երկկենտրոն» սուտադեններից առաջացած բջջագենետիկական խաթարումների վրա մոդիփիկատորների աղդեցության կախվածությունը նույնն է. այսինջն՝ մուտագենի բարձր խտությունների դեպքում մոդիֆիկատորների ազդեցությունը դիտվում է, ավելի դգալիւ

ЛИТЕРАТУРА

- 1. Аругюнян Р. М., Кулвшое Н. П. Генетика, 8, 4, 148, 1972.
- Арутюнян Р. М., Егиазарян С. В. Цитология и генетика, 9, 4, 295—298, 1975.
- 5. Бочков И. П., Яковенко К. Н., Чеботарев А. Н., Фунес Кривиото Ф., Журков В. С. Генетика, 8, 12, 160—167, 1972.
- 4. Жеребченко П. Г. Противолучевые свойства индолилалкиламинов. М., 1971.
- 5. Залинян Г. Г. Молодой ученый ЕГУ (в печати), 1979.
- 6. Hungerford D. A. Stain Technol., 40, 333-335, 1965.