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Abstract–In the following paper we study the quantum dynamics of the number of photons of the interacting modes, 
the dynamics of the quantum entropy, as well as the Wigner function of the states of the fundamental and the third 
harmonic modes for the process of intracavity third harmonic generation. It is shown that the quantum dynamics of the 
system strongly depends on the external resonant perturbation of the fundamental mode and on the coupling coefficient 
of the interacting modes. In the region of long interaction times, the modes of the field can be both in stable and in 
unstable states – depending on the above mentioned quantities. In the paper we also investigate the dynamics of 
transition of the system from stable to unstable state. It is shown that the third harmonic mode can localize in different 
unstable states with strongly different Wigner functions depending on the coupling coefficient. 

1. Introduction 

For certain optical processes, such as the intracavity generation of the second and third 

harmonics [1,2,9], stationary solutions for the dynamics of the number of photons are stable only 

for relatively small pump amplitudes. For these systems, a certain critical value of the pump field 

exists above which small fluctuations in the system do not decay and the dynamics of the 

semiclassical value of the photon number changes to the regime of self-oscillations. Among the 

unstable optical systems mentioned above, the intracavity second harmonic generation (SHG) is 

rather well investigated. Studies [1,2,3,6-8,11,13,14] are devoted to the investigation of the 

behavior of the intracavity SHG above the bifurcation point of the optical system. As compared to 

the case of the SHG, the unstable behaviour of intracavity third harmonic generation (THG) is 

insufficiently studied. In [9], the Langevin equations for stochastic field amplitudes for the THG 

process were derived in the positive P-representation. The bifurcation point of the system was 

found and it was shown that, above this point, the dynamics of the number of photons of the 

interacting modes changes to the regime of self-oscillations. Then, in [5], the distribution functions 

for the phases of the fundamental mode and of the third harmonic mode above the bifurcation point 

of the system were studied in the positive P-representation. The distribution functions were shown 

to have a two component structure. In addition to this, the functions of joint distribution of the 

number of photons and phases of the interacting modes were studied. In [4], the distribution 

functions of the number of photons of the fundamental and the third harmonic modes above the 

bifurcation point of the system, as well as the joint distribution function of the number of photons of 

the interacting modes, were studied in the positive P-representation. It is shown that, when the 

system turns from stable to the unstable region, the above mentioned functions change from 
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one-component structure to two-component structure. 

In present paper, we study the quantum dynamics of the number of photons and the dynamics 

of quantum entropy and the Wigner functions of the fundamental and third harmonic modes for the 

process of intracavity third harmonic generation. The dependence of the state of the field upon the 

coupling coefficient and upon the amplitude of the external perturbing field acting on the 

fundamental mode is studied. We also investigate the quantum dynamics of the transition of the 

system from stable state to unstable state. 

2. The Nonlinear System and the Basic Equations 

Consider a model of THG inside a two mode cavity. A nonlinear medium is placed inside a 

cavity tuned to the frequencies of the fundamental mode 1ω  and of the third harmonic 2 ,ω  where 

2 13 .ω = ω  The fundamental mode is resonantly perturbed by an external classical field. The density 

matrix equation, which describes this optical system, can be written in the following form: 

 ( ) ( )1 , ,sysih H L
t

−∂ρ ⎡ ⎤= ρ + ρ⎣ ⎦∂
 (1) 

where 

 ( ) ( )3 3
1 2 1 2 1 1 ,

2sys
iH a a a a i E a a+ + +χ

= − + −  (2) 

 ( ) ( )
2

1
2 .

2
i

i i i i i i
i

L a a a a a a+ + +

=

γ
ρ = ρ −ρ − ρ∑  (3) 

Here, ia  and ia+  ( 1, 2)i =  are the annihilation and creation operators of photons of the fundamental 

mode and the third harmonic mode, respectively; χ is the coupling coefficient of the modes, which 

is proportional to the nonlinear susceptibility ( )3χ  of the medium; E  is the classical amplitude of 

the perturbing field at the frequency 1ω ; iγ  ( 1,2)i =  are the damping coefficients of the interacting 

modes. In (2) phase of the perturbing field is omitted for simplicity. 

In order to investigate the quantum dynamics of the optical system, we calculate the mean 

number of photons of the modes 

 ( ) ( )( ) ,i i i in t Tr t a a+= ρ   ( 1,2),i =  (4) 

where the density matrices of the interacting modes are obtained by calculating the trace of the 

density matrix of the system 

 ( ) ( ) ( )1 2 2 1 .Trρ = ρ  (5) 

We also consider the dynamics of the quantum entropy of the modes of the field 

 ( ) ( ) ( )( )ln , ( 1, 2).i i iS t Tr t t i= − ρ ρ =  (6) 
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We calculate the quantum entropy of the modes of the field by the numerical diagonalization 

of the corresponding density matrices in the Fock basis [10]. In order to study quantum properties 

of the optical systems, we also calculate the Wigner function of the states of the modes of the field. 

These functions are calculated in polar coordinates cos ,x r= θ  sin ,x r= θ  by using formula in [10]: 

 ( ) ( ),
,

, , , ( 1, 2)i i mn mn
m n

W r w r iθ = ρ θ =∑  (7) 

Here, ,i mnρ  are the matrix elements of the density matrices of the interacting modes in the Fock 

basis. The expression for ( ),mnw r θ  are defined by the formula 

 ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2
2 2

1 2
2 2

2 !1 exp exp 2 2 4 ,
!

,
2 !1 exp exp 2 2 4 ,

!

n m n m n
n

mn
m n m n n

m

n i m n r r L r m n
m

w r
m i m n r r L r m n
n

− −

− −

⎧ ⎛ ⎞ ⎡ ⎤− − θ − ≥⎡ ⎤⎪ ⎜ ⎟ ⎣ ⎦ ⎣ ⎦π⎪ ⎝ ⎠θ = ⎨
⎛ ⎞⎪ ⎡ ⎤− − θ − ≥⎡ ⎤⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎪π ⎝ ⎠⎩

 (8) 

Here, q
pL  are the Laguerre polynomials. 

Equation (1) for the density matrix of the optical system is solved applying the numerical 

Monte Carlo wave-function method [12]. In this method, the density matrix of the system is 

represented as the expectation for the density matrices of the quantum trajectories, each of which 

represents a pure state, which can be found by using certain algorithm: 

 ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )
( )

1lim .
N

N
t M t t t t

N
α α α α

→∞
α

ρ = φ φ = φ φ∑  (9) 

Here, (α) is the trajectory number; N  is the number of all independent quantum trajectories. 

The algorithm to calculate a single quantum trajectory of the field of our system is described 

below. 

In order to calculate the quantum trajectory of the field at the time ,t t+ δ  we calculate the 

probability of a quantum jump of the trajectory at time .t  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 1 2 2 2 .p p p t t a a t t t a a tα α α α+ +δ = δ + δ = γ δ φ φ + γ δ φ φ  (10) 

To compute this expression, we expand the state ( ) ( )tαφ  in the Fock bases of the interacting 

modes: 

 ( ) ( ) ( ) ( ) 1 2
,

,mn
m n

t a t m nα αφ =∑  (11) 

where 
1

m  and 
2

n  are the Fock states of the fundamental and the third harmonic modes, 

respectively. Using this decomposition, (10) can be written in the following form: 
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 ( ) ( )( )
( ) ( )( )
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,

,

.

mn mn
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mn mn
m n

p p p

p t ma a

p t na a

∗α α

∗α α

δ = δ + δ

δ = γ δ

δ = γ δ

∑

∑

 (12) 

After computing (12) a random number ζ is generated, which has a uniform distribution on 

the interval (0,1).  If ,pζ < δ  the trajectory of the system experiences a jump. In this case, 

normalized probability of the jump of the state of the fundamental mode is calculated. Similarly, the 

probability of the jump of state of the third harmonic mode can be calculated: 

 1
1

1 2

.pp
p p
δ

=
δ + δ

 (13) 

Next, another random number η  is generated, which has a uniform distribution on the interval 

(0,1).  If 1pη < , the state of the fundamental mode undergoes a one-photon jump that brings the 

field into the state 

 ( ) ( )
( ) ( )1 1

1

.
a t t

t t
p t

α

α
γ φ + δ

φ + δ =
δ δ

 (14) 

If 1pη >  the system undergoes a one-photon jump of the state of third harmonic mode that brings 

the system into the new state 

 ( ) ( )
( ) ( )2 2

2

.
a t t

t t
p t

α

α
γ φ + δ

φ + δ =
δ δ

 (15) 

The coefficients ( ) ( )mna tα  of expansion of the trajectory of the field in the Fock bases of the 

fundamental and the third harmonic modes change in correspondence with formulas (14) and (15): 

 ( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )( )
1

1 2*

,

1
,m n

mn

mn mnm n

a t m
a t t

ma t a t
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+
+ δ =

∑
 (16) 

 ( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )( )
1

1 2*

,

1
.m n

mn

mn mnm n

a t n
a t t

na t a t

α
α +

α α

+
+ δ =

∑
 (17) 

If pζ > δ  then the trajectory of the optical system varies continuously: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1~ ,efft t t i H t t−α α αφ + δ φ + δ φ  (18) 

where 

 1 2
1 1 2 22 2eff sysH H i a a i a a+ +γ γ

= − −  (19) 

is the non-Hermitian Hamiltonian that governs the continuous evolution of the system. After each 



S.T. Gevorgyan, M. S. Gevorgyan  ||  Armenian Journal of Physics, 2012, vol. 5, issue 3 

126 

step of the continuous evolution, the new state of the system is normalized. After normalization, the 

new coefficients of expansion of the trajectories of the fundamental and the third harmonic modes 

in the Fock bases are as follows: 

 

( ) ( ) ( ) ( ) ( ) ( ){ ( ) ( )

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )

1 1

3 1 3 1

1 2

1 1
1

1 2 1 3 2 1
2 2

.
2 2

mn mn m n m n

m n m n

m n m n

a t t a t E ta t m E ta t m
p

ta t m m m n ta t m m m n

ta t m ta t n

α α α α
− +

α α
− + + −

α α

+ δ = + δ − δ + +
− δ

χ χ
δ − − + − δ + + + −

γ γ ⎫δ − δ ⎬
⎭

 (20) 

In the Fock basis, the matrix elements of the density matrices of the fundamental mode 

( )1,mn tρ  and the mode of the third harmonic ( )2,mn tρ  can be computed using the following 

formulas: 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( )

1,
1lim ,

N

mn mk nk mk nkNk k

t M a t a t a t a t
N

∗ ∗α α α α

→∞
α

⎛ ⎞ρ = =⎜ ⎟
⎝ ⎠
∑ ∑∑  (21) 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( )

2,
1lim ,

N

mn km kn km knNk k

t M a t a t a t a t
N

∗ ∗α α α α

→∞
α

⎛ ⎞ρ = =⎜ ⎟
⎝ ⎠
∑ ∑∑  (22) 

We investigate the dynamics of the system using dimensionless time 1tτ = γ  and 

dimensionless parameters 

 2

1 1 1

, ,E r kγ χ
ε = = =

γ γ γ
 (23) 

for the ratio of dumping coefficients of the modes 1r =  in the case of evolution of the system from 

initial vacuum state. The mean number of photons, the quantum entropy and the Wigner functions 

of the modes are calculated using 1000 independent quantum trajectories of the optical systems. 

3. The Quantum Dynamics of the System in the Case of Strong Coupling of the Modes 
and Strong Perturbation of the Fundamental Mode 

Studied in this section is the quantum dynamics of the interacting modes of the optical system 

in the region of strong coupling of the modes ( 0.3)k =  and in the case of a strong external 

perturbation of the fundamental mode ( 3).ε =   

Figure 1 shows the quantum dynamics of the number of the photons of the fundamental mode 

(curve a) and the dynamics of the number of photons of the same mode for an arbitrarily chosen 

quantum trajectory of the optical system (curve b). In the region of long interaction time, the 

dynamics of the number of photons of a single trajectory differs much from the dynamics of the 

mean number of photons of the mode. The latter observation shows that, there are strong 

fluctuations in the number of photons of the fundamental mode in the region of long interaction 
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times ( 1).τ >  In the region of short interaction time ( 1),τ <  the dynamics of the mean number of 

photons of the mode is the same as the dynamics of the number of photons of an arbitrarily chosen 

quantum trajectory. For long interaction times, small fluctuations in the number of photons do not 

decay, which leads to a significant difference between the dynamics of the mean number of photons 

and the dynamics of the photon number of an arbitrarily chosen quantum trajectory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 shows the quantum dynamics of the number of the photons of the third harmonic 

mode (curve a) and the dynamics of the number of photons of an arbitrarily chosen quantum 

trajectory of the the same mode (curve b). As in the case of the fundamental mode, in the region of 

short interaction times ( 1),τ <  the dynamics of the number of photons of a single quantum 

trajectory is the same as the dynamics of the mean number of photons, and in the region of large 

interaction times ( 1),τ >  the number of photons of a single quantum trajectory strongly fluctuates 
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around the mean number of photons of the mode. The latter observation shows that the system turns 

to region of unstable behavior, where small fluctuations of the number of photons of the interacting 

modes do not damp. 

Figure 3 shows the dynamics of the quantum entropy (6) of the fundamental mode. In the 

region of short interaction times, the quantum entropy of the mode is equal to zero, which indicates 

that in this region of interaction the mode is in a pure state and the ensemble of the quantum 

trajectories consists of a single term. The latter observation explains the coincidence of the 

dynamics of the number of photons of a single quantum trajectory and of the dynamics of mean 

number of photons (see Fig. 1). After that, the quantum entropy of the mode starts to grow. Then, in 

the region of long interaction times ( 4),τ >  it obtains a stationary value. In this region of 

interaction times, the state of the system almost does not change any more and it represents a 

statistical mixture of pure states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 shows the dynamics of the quantum entropy of the third harmonic mode. As in the 

case of the fundamental mode, the quantum entropy of the third harmonic mode is equal to zero in 
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the region of small interaction times. The mode is in a pure state and the ensemble of the quantum 

trajectories consists of a single term, which explains the coincidence of the dynamics of the number 

of photons of a single quantum trajectory and the dynamics of the mean number of photons in the 

region of small interaction times (see Fig. 2). Then, the quantum entropy of the mode starts 

growing, and, in the region of the long interaction times ( 4),τ >  it turns to stationary value. After 

that, the state of the system remains almost unchanged. The stationary value of the quantum entropy 

of the third harmonic is less than the stationary value of quantum entropy of the fundamental mode 

(see Fig. 3 and 4). 
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Shown in Fig. 5 is the dynamics of the Wigner function of the state of the fundamental mode. 

Here, Fig. 5(a) shows the Wigner function of the initial vacuum state. Curves (b), (c), (d), (e), (f) 

show the Wigner function of the state of the fundamental mode at the times of interaction 1,τ =  1.5, 

2, 3, and 10, respectively. At time 1τ =  the system is in a pure coherent state with zero quantum 

entropy, into which it changed from initial vacuum state. At that moment, the number of photons 

have already reached almost the maximum value and does not change further (see Fig. 1). After 

that, there is a sharp growth in the quantum entropy. The latter observation shows that, although the 

energy of the mode does not change, the state starts to change sharply. Near time 1.5τ =  the mode 

has already changed from a coherent state to a squeezed state (see Fig. 5(c)). In this state, the 

quantum entropy of the fundamental mode is approximately 0.3, which shows that the system is not 

in a pure state. After that, as the the quantum entropy increases, the squeezed state of the 

fundamental mode begins to decay gradually and at time 2τ ≈  (see Fig. 5(d)), the system gradually 

changes from a stable state into an unstable state. At time 3,τ ≈  the quantum entropy of the mode 

already almost reaches the maximal value 1.7, (the stationary value of the quantum entropy of the 

mode is approximately 1.9) and the system changes to unstable state, the Wigner function of which 

is shown in Fig. 5(e). After that, the quantum entropy of the fundamental mode changes to 

stationary value. The Wigner function of the stationary state of the fundamental mode at time 

10τ =  is shown in Fig. 5(f). It only slightly differs from the Wigner function shown in Fig. 5(e) and 

it represents the unstable stationary state of the fundamental mode, which has two state components. 

Shown in Fig. 6 is the dynamics of the Wigner function of the state of the third harmonic 

mode. Curves (a), (b), (c), (d), (e) show the Wigner function of the state of the third harmonic mode 

at the times of interaction of the modes of the optical system, 1,τ =  1.5, 2, 3, and 10, respectively. 

The mode was changing from initial vacuum state into a pure coherent state with (Fig. 6(a)) zero 

quantum entropy at time 1τ ≈  (see Fig. 4). Meanwhile, the number of photons of the mode (see 

Fig. 2) grew insignificantly, and the coherent state of the system was close to vacuum state, which 

also reflects the Wigner function in Fig. 6(a). After that the quantum entropy of the system starts to 

grow, and at time 1.5,τ ≈  it reaches the value 0.3. The Wigner function of the state of the mode at 

time 1.5τ =  is shown in Fig. 6(b). It represent a squeezed state with a slightly squeezed quadrature 

component. After that, as the quantum entropy of the system grows, the squeezed state of the 

system begins to decay. The Wigner function of the state of the mode at time 2τ =  is shown in 

Fig. 6(c). The quantum entropy of this state is approximately equal to 0.9. A stationary unstable 

state begins to form in the system, the Wigner function of which at time 3τ =  is shown in Fig. 6(d). 

The quantum entropy of this state is approximately equal to 1.5 and it has almost reached the 

stationary value. After that the state of the system almost does not change. The Wigner function of 
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the state of the third harmonic mode for the region of long interaction time ( 10)τ =  is shown in Fig. 

6(e). It has a cylindrical form and it represents the state of the mode of the third harmonic with 

completely undefined phase. The system is in an unstable state with an undefined phase. The 

quantum entropy of the stationary state is approximately equal to 1.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 7 and 8 represent the Wigner functions of two arbitrarily chosen quantum trajectories 

of the optical system in the region of long interaction time 10.τ =  Figure 7(a) represents the Wigner 

function of the state of the fundamental mode, and Fig. 7(b) represents the Wigner function of the 
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state of the third harmonic mode of an arbitrarily chosen quantum trajectory. Figure 8(a) and 8(b) 

represent the Wigner functions of the states of the fundamental and the third harmonic modes of 

another arbitrarily chosen quantum trajectory, respectively. The Wigner functions of the 

corresponding modes of two different quantum trajectories differ much from each other. The latter 

explains the high values of the quantum entropy of the modes in this region of interaction times. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. The Quantum Dynamics of the Interacting Modes in the Case of Strong Coupling 
of the Modes and Weak Perturbation of the Fundamental Mode 

In this section, we study the quantum dynamics of the system in the case where perturbation 

of the fundamental mode is weak ( 1)ε =  as compared to the case studied in the previous section 

( 3).ε =  The coupling coefficient remains the same ( 0.3).k =  

Figure 9 illustrates the quantum dynamics of the number of photons of the fundamental mode 
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(curve a) and the dynamics of the number of photons of an arbitrarily chosen quantum trajectory 

(curve b). In the region of short interaction time ( 2),τ <  the dynamics of the mean number of 

photons coincides with the dynamics of the number of photons of an arbitrarily chosen quantum 

trajectory of the fundamental mode. In the region of long interaction times, we explain the slight 

fluctuations of the number of photons of an arbitrarily chosen quantum trajectory of the system to 

be due to weak perturbation of the fundamental mode. The system is in stable state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 illustrates the quantum dynamics of the mean number of photons (curve a) and of 

the number of photons of an arbitrarily chosen trajectory (curve b) of the third harmonic. In the 

region of short interaction times ( 2),τ <  the dynamics of the mean number of photons of the third 

harmonic coincides with the dynamics of the number of photons of an arbitrarily chosen quantum 
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trajectory. In the region of long interaction times, we explain the large fluctuations of the number of 

photons of an arbitrarily chosen trajectory around the mean number of photons to be due to small 

value of the number of photons. 

Shown in Figs. 11 and 12 are the dynamics of the quantum entropy of the fundamental and 

the third harmonic modes, respectively. In the region of short interaction time ( 2),τ <  the quantum 

entropies of the modes are equal to zero, which shows that the modes are in pure states in this 

region of interaction times. Later, the quantum entropy of the modes starts growing. In the region of 

long interaction time ( 10),τ =  it is approximately equal to 0.4. In contrast to the case of strong 

external perturbation of the fundamental mode, the stationary values of the quantum entropies of the 

modes are equal in the present case, and they are smaller than the corresponding values in the case 

of strong perturbation. That the values of quantum entropy are small, shows that the ensemble of 

quantum trajectories consists of less terms in the present case than in the former one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shown in Figs. 13 and 14 is the quantum dynamics of the Wigner function of the states of the 

fundamental and the third harmonic modes, respectively. Figs. 13(a) and 14(a) represent the Wigner 
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functions of the states of the fundamental and the third harmonic modes, respectively, at interaction 

time 2.τ =  Both of the functions represent a pure coherent state ( the quantum entropy is equal to 

zero, (see Fig. 11 and 12)). At this time of interaction, the number of photons of the third harmonic 

(see Fig. 10) is still small and the Wigner function of the state of the mode represents a coherent 

state, which is close to vacuum state. Figs. 13(b) and 14(b) represent the Wigner functions of the 

states of the fundamental and the third harmonic modes, respectively, in the region of long 

interaction times ( 10).τ =  In the region of long interaction times, the fundamental mode changes 

from pure coherent state into squeezed stationary state, the value of quantum entropy of which 

equals to 0.4. The mode of the third harmonic changes into a state, the Wigner function of which is 

similar to the Wigner function of a coherent state, but the value of quantum entropy equals to 0.4. 

The Wigner functions show that the system is in stable state in the region of long interaction times. 
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5. The Quantum Dynamics of the System in the Case of Weak Coupling 
of the Interacting Modes and Strong Perturbation of the Fundamental Mode 

In this section, we investigate the quantum dynamics of the system in the case of weak 

coupling of the modes ( 0.1)k =  and strong external resonant perturbation ( 3)ε =  of the 

fundamental mode. 

Shown in Fig. 15 is the quantum dynamics of the number of photons of the fundamental mode 

(curve a) and of an arbitrarily chosen quantum trajectory of the fundamental mode (curve b). The 

dynamics of the number of photons and of an arbitrarily chosen quantum trajectory coincide in the 

region of short interaction times ( 2).τ <  Later, the number of photons of an arbitrarily chosen 

quantum trajectory fluctuates around the mean number of photons of the fundamental mode. That 

the magnitude of the fluctuations is small, as compared to the magnitude of fluctuations of an 

arbitrarily chosen quantum trajectory shown in Fig. 1, we explain to be due to weak coupling of the 

interacting modes. 
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Shown in Fig. 16 are the quantum dynamics of the number of photons of the third harmonic 

mode (curve a) and of an arbitrarily chosen quantum trajectory of the third harmonic mode 

(curve b). In the region of short interaction times ( 2),τ <  the dynamics of the mean number of 

photons coincides with the dynamics of an arbitrary quantum trajectory. Later, the number of 

photons of an arbitrary quantum trajectory fluctuates around the mean number of photons of the 

mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shown in Figs. 17 and 18 are the dynamics of the quantum entropy of the fundamental and 

third harmonic modes, respectively. In the region of short interaction times ( 2)τ <  the values of 

quantum entropy of the modes are equal to zero. The latter observation shows that the ensemble of 

the quantum trajectories of the system consist of a single element in this region of interaction time, 

which explains the coincidence of the dynamics of the mean number of photons with the dynamics 

of the number of photons of an arbitrarily chosen quantum trajectory of the corresponding modes. 

In the region of long interaction time, the dynamics of the quantum entropies of the modes changes 
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to a stationary behavior. In the region of long interaction time, in contrast to the case of strong 

coupling of the modes shown in Figs. 3 and 4, the stationary values of the quantum entropies of the 

modes are equal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shown in Figs. 19 and 20 are the dynamics of the Wigner functions of the fundamental and 

third harmonic modes, respectively. At time of interaction 2τ ≈  the fundamental mode changes 

from vacuum state into a pure squeezed state. The quantum entropy of this state is equal to zero. 

After that, the squeezed state decays, and in the region of long interaction time, ( 10),τ =  the 

fundamental mode localizes to an unstable state, the Wigner function of which is shown in 

Fig. 19(b). The Wigner function represents a two-component state with coupling of the components 

of the state. The quantum entropy of this state approximately equals to 1.4. Near time of interaction 

2,τ =  the mode of the third harmonic localizes to a pure coherent state (see Fig. 20(a)) (the 
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quantum entropy is equal to zero) from the initial vacuum state. After that the coherent state of the 

mode decays, and in the region of long interaction time ( 10),τ =  the mode localizes to a stationary 

unstable state, the Wigner function of which is shown in Fig. 20(b). 

In this case the Wigner function has a two-component structure with coupling of the 

components of the state. This observation contrasts with the case of strong coupling of the modes 

and strong perturbation of the fundamental mode, where the Wigner function has cylindrical form 

(see Fig. 6(e)) in the region of long interaction times and where the behavior of the system is 

unstable. 

6. Conclusion 

The intracavity third harmonic generation process is investigated. The dynamics of the 

number of photons, of the quantum entropy as well as of the Wigner function of the interacting 

modes is studied. We have shown that the system can be in different stationary states depending on 

the amplitude of the external perturbation of the fundamental mode and on the coupling coefficient 

of the modes. In the case of strong external perturbation of the fundamental mode, we have shown 

that the fundamental mode and the mode of the third harmonic initially localize to squeezed states. 

After that, the squeezed states of the modes gradually decay, and the modes localize to unstable 

stationary states. In the case of strong coupling of the modes and in the region of large interaction 

times, the mode of the third harmonic localizes to a state, the Wigner function of which has 

cylindrical form, which shows that the phase of this mode is completely undefined in the stationary 

state. In the case of weak coupling between the modes, the mode of the third harmonic localizes to a 

state, the Wigner function of which has two-component structure. In both cases, the fundamental 

mode localizes to stationary states, the Wigner functions of which have two-component structure. 
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