
Armenian Journal of Physics, 2012, vol. 5, issue 2, pp. 58-61 

INVESTIGATION OF ENERGY LEVEL 
OF EVEN-EVEN 104-112Cd ISOTOPES 

UNDER THE FRAMEWORK OF IBM-1 

Hewa Y. Abdullah1,2*,  I. Hossain1,  I. M. Ahmed3,  S. T. Ahmad4,  M. A. Saeed1,  N. Ibrahim1 

1Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia 
2Department of Physics, College of Science Education, Salahaddin University, Erbil, Iraq 

3Department of Physics, College of Education, Mosul University, 966 Mosul, Iraq 
4Department of Physics, Faculty of Science, Koya University, 9644 Koya, Iraq 

*E-mail: kuhewa@yahoo.com 

Received 03 March, 2012 

Abstract–The interacting boson model (IBM-1) has been used in the study of the nuclear structure of even-even 
104-112Cd isotopes. The values of the parameters in the IBM-1 Hamiltonian which yield the best fit to the experimental 
energy spectrum. It is shown that there is a good agreement between the results found and with the experimental ones. 
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1. Introduction 

The nucleus consists of many nucleons (protons and neutrons). Each nucleon is interacting 

with all others and moving within a complex structure. A model of the atomic nucleus has to be 

able to describe nuclear properties such as spins and energies of the lowest levels, decay 

probabilities for the emission of gamma quanta’s, probabilities (spectroscopic factors) of the 

transfer reaction, multipole moments and so forth. Those models outlined from which the IBM 

comes. The interacting boson model of Arima and Iachello [1-6] has become widely accepted as a 

tractable theoretical scheme of correlating, describing and predicting low-energy collective 

properties of complex nuclei. The basic idea of this model is based on the assumption which 

assumes that the low-lying collective states in even-even nuclei could be described as states of a 

given (fixed) number N of bosons. Each boson could occupy two levels; one with angular 

momentum 0L   (s-boson) and the other, usually with higher energy, with 2L   (d-boson). In the 

original form of the model known as the Interacting Boson Model (IBM-1), proton and neutron-

boson degrees of freedom are not distinguished. Cadmium isotopes have been the subject of studies 

in nuclear-structure physics [7-9]. Even-even Cadmium isotopes are part of an interesting region 

beyond the closed proton shell at 50,Z   while the number of neutrons in the open shell is much 

larger.  

Our aim of the present work is to investigate even-even 104-112Cd isotopes in (U5) region and 

calculate energy levels within framework of Interacting Boson Model. 
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2. Theoretical Basics of Interacting Boson Model (IBM-1) 

The IBM-1 Hamiltonian can be expressed as [10]  

 0 1 2 3 3 3 4 4 4
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ . . . . . .dH n a P P a L L a Q Q a T T a T T       (1) 

Here 0 ,a  1,a  2 ,a  3a  and 4a  are strength of pairing, angular momentum and multipole terms. The 

Hamiltonian as given in (1) tends to reduces to three limits: the vibration U(5), γ-soft O(6) and the 

rotational SU(3) nuclei, starting with the unitary group U(6) and finishing with group O(2) [11]. In 

U(5) limit, the effective parameter is , in the γ-soft limit, O(6), the effective parameter is the 

pairing 0a ; and in the SU(3) limit, the effective parameter is the quadrupole 2a . 

The eigenvalues for the U(5) limit is given by [12] 

        1 4 5 1 4 5ˆ, , , 4 3 1 ,d d dE L K K K n K n n K K L L            (2) 

where  is the d-boson seniority and hence the number of d-bosons not paired to angular 

momentum zero. The parameters , 1K , 4K  and 5K  represent the strength of their terms. However, 

it turn out that for fixed boson number N, only one of the one-body terms and five of two-body 

terms are interdependent, as it can be seen by noting 

 .s dN n n    (3) 

3. Results and Discussion 

To produce the low-lying energy levels of a nucleus using the IBM-1 model, it is necessary to 

specify the symmetry shape of the nucleus, which can be predicted from the energy ratio between 

1 14 2R E E   energy levels. 4 2R  has a limit value of 2 for the vibrational nuclei U(5), 2.5 for 

γ-unstable nuclei O(6) and finally 3.33 for rotational nuclei SU(3). 

A computing program was written by using the MatLab 6.5 environment to calculate the 

energies of some states of the ground state band by applying the eigenvalue expression for the 

vibrational nuclei (equation 2) which is suitable for the nuclei under the investigation.  

However, the seniority number in the ground state band is given by 2,dn L    therefore 

the values of this number for 12  and 18 ,  as example will be as following: 2 1dn L     for 12  

state and 2 4dn L     for 18  state. The four unknown parameters , 1K , 4K  and 5K  were 

determined by solving Eqs. (1)–(3) for four energy states, two from the states of the ground state 

band, one from the beta band and the fourth from the gamma band. The evaluated parameters were 

used to obtain the energy spectrum in this work.  

The suitable parameters for each nucleus at the evolving states are determined using Eq. (2). 

Table 1 shows the values of these parameters that have been used to calculate the energy of the 
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yrast-line states for the isotopes under study. This is then compared with the experimental values 

[13-17]. Tables 2–6 show these results with the percentage error for each isotope. 

The values of the first excited state 12E   and the ratio 1 14 2R E E   show that 104–112Cd(e–e) 

isotopes are vibrational. 

Table 1. Boson number and calculated parameters in (keV) for 104-112Cd even-even isotopes 

A N  1K  4K  5K  

104 4 495.34 50.78 19.57 2.16 
106 5 707.99 31.61 35.76 2.81 

108 6 772.58 14.63 39.52 9.15 

110 7 878.79 23.72 22.63 14.79 

112 8 891.99 46.67 14.61 16.89 

Table 2. Experimental and theoretical excitation energies (in keV) of levels for 104Cd nucleus 

Nucleus gsbJ    ex
gsbE  [13] th

gsbE   %  
104Cd 0+ 0 0 0 

 2+ 658(20) 658.0 0 
 4+ 1492.1(4) 1361.2 8.7 
 6+ 2370.2(4) 2109.5 10.9 
 8+ 2903.1(4) 2903.0 0.003 

Table 3. Experimental and theoretical excitation energies (in keV) of levels for 106Cd nucleus 

Nucleus gsbJ   ex
gsbE  [14] th

gsbE  %  
106Cd 0+ 0 0 0 

 2+ 632.64(4) 739.8 16.9 
 4+ 1493.78(5) 1493.8 0.003 
 6+ 2491.66(6) 2261.9 9.2 
 8+ 3044.13(7) 3044.13 0 

Table 4. Experimental and theoretical excitation energies (in keV) of levels for 108Cd nucleus 

Nucleus gsbJ   ex
gsbE  [15] th

gsbE  %  
108Cd 0+ 0 0 0 

 2+ 632.98(16) 742.5 17.3 
 4+ 1508.46(23) 1508.5 0.002 
 6+ 2994.1(2) 2397.8 19.9 
 8+ 3110.49(10) 3110.6 0.003 

Table 5. Experimental and theoretical excitation energies (in keV) of levels for 110Cd nucleus 

Nucleus gsbJ   ex
gsbE  [16] th

gsbE  %  
110Cd 0+ 0 0 0 

 2+ 776.55(14) 758.4 2.3 
 4+ 1637.9(3) 1542.4 0.05 
 6+ 2230.8(3) 2352.1 5.4 
 8+ 2718.6(3) 3187.3 17.2 
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Table 6. Experimental and theoretical excitation energies (in keV) of levels for 112Cd nucleus 

Nucleus gsbJ   ex
gsbE  [17] th

gsbE  %  
112Cd 0+ 0 0 0 

 2+ 617.52(10) 701.5 13.5 
 4+ 1415.58(12) 1415.6 0.001 
 6+ 2168.03(15) 2142.2 1.19 
 8+ 2881.26(16) 2881.3 0.001 

4. Conclusion 

The low-lying experimental energy levels of the ground state bands in all considered 

Cd-isotopes are very well reproduced in the calculated results of the IBM-1 compared to those of 

other models.  

The analysis of the calculated results for the low-lying positive parity energy spectra obtained 

within the framework of interacting boson approximations shows that the Cd-isotopes under study 

are considered as vibrational nuclei and close to U(5) symmetry. 
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