T. XXXI, № 1, 1978

УДК 575.1:633.11:615.711.6

А. А. МУРАДЯН, В. А. АВАКЯН, С. Е. ЕГИАЗАРЯН

ХАРАКТЕР МОДИФИКАЦИИ КОФЕИНОМ ЛУЧЕВОГО ПОВРЕЖДЕНИЯ У РАЗНОПЛОИДНЫХ ВИДОВ ПШЕНИЦЫ В ЗАВИСИМОСТИ ОТ ВРЕМЕНИ ВОЗДЕЙСТВИЯ

Изучалась радиочувствительность ди-, тетра- и гексаплоидных пшениц на цитогепетическом уровне при пострадиационном воздействии ингибитором кофеином сразу и через 2, 4 и 6 час.

Оказалось, что интенсивность восстановления выше у тетра- и гексаплоидной пшениц, т. е. радиочувствительность этих форм обусловлена более высоким по сравнению с чувствительной диплоидной формой уровнем восстановительных процессов.

Использование кофенна в качестве ингибитора репарационных процессов после облучения, как известно, приводит к увеличению числа повреждений хромосом [1—7].

Эффективность ингибирования цитогенетических повреждений радиации зависит не только от дозы лучевого воздействия, концентрации ингибитора, стадии митоза, на которой воздействуют модификаторами, но и от временных параметров действия ингибиторов. Для выяснения причин повышенной радиочувствительности полиплоидных форм мы изучали радиочувствительность ди-, тетра- и гексаплоидных пшениц на цитогенетическом уровне при пострадиационном воздействии ингибитором кофеином сразу и через 2, 4 и 6 час.

Материал и методика. Воздушно-сухие семена разной плоидности—Т. топососсит L. (2n=14). Т. durum Desf., v. coerulescens (2n=28) и Т. aestivum, v. eritrospermum (2n=42)—облучались рентгеновским аппаратом РУМ-11 дозой 10 кр. Часть облученных семян сразу же, а также через 2, 4 и 6 час., помещалась в 0,02% й раствор кофеина на 2 часа. По истечении этого времени сни промывались. Остальная часть семян, а также контрольные смачивались проточной водой. Проращивание осуществлялось в чашках Петри при 25%. Для анафазного анализа фиксировались корешки длиной 7—10 мм в ацеталкоголе. Приготавливались давленые ацетокарминовые препараты.

Результаты и обсуждение. Полученные данные свидетельствуют о незначительном увеличении процента аберрантных клеток, по сравнению с контролем, у пшениц разной плоидности.

Максимальное увеличение количества аберрантных клеток выявлепо через 6 час. у всех видов пшеницы при пострадиационной обработке кофеином. Усиление этого эффекта у диплоидной пшеницы наблютается по мере увеличения интервала времени между облучением и
обработкой кофеином (табл. 1).

Таблица I Частота перестроек хромосом у піцениц разной плоидности при воздействии рентгеновскими лучами и кофеином

	2n			4n			6n		
Варианты опыта	просмотрено			просмотрено			просмотрено		
	анафаз	анафаз с пере- стройка- ми	0/ ₀ анафаз с пере- стройками	анафаз	анафаз с перестрой- ками	⁰ / _в анафаз с пере- стройками	анаф а з	анафаз с перестрой- ками	⁰ / ₀ анафаз с пере- стройками
Контроль	567	16	1,58±0,7	279	2	0,7±0,5	574	26	4,5 <u>+</u> 0,9
Облучение, 10 кр	596	173	29,00+1,9	424	116	27,4±2,2	340	194	$57,1\pm2,7$
Кофеин, 0,02°/ ₀	685	44	6,40±0,9	309	4	1,3±0,6	611	56	$9,2\pm1,2$
Облучение + кофени сразу после облучения	660	206	31,2 ±1,8	807	209	25,9±1,5	121	61	50,4±4,5
Облучение + кофеин через 2 час. после облучения	620	217	35,00±1,9	899	301	40,1±1,6	522	294	55,4±2,2
Облучение — кофени через 4 час. после облучения	622	239	38,50 <u>±</u> 1,9	791	213	30,8±1,6	357	215	60,3±2,6
Облучение + кофени через 6 час. после облучения	652	310	47,6 ±1,9	389	159	40,9±2,4	457	274	60,0±2,3

Кофеин, использованный сразу после облучения, не вызывает усиления действия раднации у тетра- и гексаплоидной пшениц. Через 2, 4 и 6 час. у тетраплоидной и 4 и 6 час. у гексаплоидной пшениц он приводит к увеличению повреждений.

Данные о числе перестроек хромосом в пересчете на поврежденную клетку у пшениц разной плоидности приведены в табл. 2.

Таблица 2
Частота перестроек хромосом в пересчете на поврежденную клетку у пшениц
разной плоидности при воздействии рентгеновокими лучами и кофеином

Варианты опыта	211	4n	6n
Контроль Облучение 10 кр Кофенн 0.02% Облучение + кофеин сразу после облучения Облучение + кофеин через 2 час. после облучения Облучение + кофеин через 4 час. после облучения Облучение + кофеин через 6 час. после облучения	1,37	1,00	1,85
	2,59	1,92	2,77
	2,23	2,50	2,54
	2,58	2,32	2,28
	2,31	2,99	3,88
	2,30	2,36	2,45
	2,45	2,93	2,92

В варианте с облучением число перестроек хромосом в пересчете на клетку у диплоидной пшеницы составляет 2,59, а у тетра- и гексаплоидной—1,92 и 2,77.

При совместном воздействии рентгеноблучения и кофеина у тетраи гексаплондной пшениц этот показатель повышается, а у диплоидной—подобный эффект не отмечен. Максимальное число перестроек отмечается в случае обработки кофеином через 2 час. после облучения. У этих пшениц незначительный защитный эффект был отмечен при воздействии кофеином сразу после облучения.

Для характеристики протекания репарационных процессов у пшениц разной плоидности был использован показатель интенсивности восстановления: отношение числа клеток с аберрациями хромосом в вариантах «облучение+кофеин» к числу их в варианте с одним лишь облучением.

Зависимость этого показателя от времени пострадиационной обработки кофеином показана в табл. 3, из которой видно, что он выше у тетра- и гексаплоидной пшениц, т. е. радиоустойчивость этих форм обусловлена высоким уровнем восстановительных процессов, по сравнению с чувствительной диплоидной формой. Аналогичные результаты получены в опытах других авторов. Установлено, что в клетках устойчивой тетраплоидной гречихи кофеин вызывает большее увеличение числа повреждений, чем в клетках радиочувствительной диплоидной гречихи [8]. Опыты, проведенные по той же схеме на синхронизированной корневой меристеме бобов, также дали подобные результаты [3]. Однако в литературе имеются данные, не подтверждающие интенсификации репарационных процессов у пшеницы по мере повышения влоидности [10].

			_
Варианты опыта	2n	4 n	6n
Облучение	2,59	1,92	2,82
Облучение + кофеин сразу после облучения	2,58	2,32	2,28
Интенсивность восстановления	0,99	1,21	0,81
Облучение	2,59	1,92	2,82
Облучение + кофеин через 2 час. после облучения	2,31	2,99	3,88
Интенсивность восстановления	0,89	1,56	1,37
Облучение	2,59	1,92	2,82
Облучение + кофеин через 4 час. после облучения	2,30	2,36	2,45
Интенсивность восстановления	0,89	1,23	0,86
Облучение	2,59	1,92	2,82
Облучение + кофеин через 6 час. после облучения	2,48	2,93	2,92
Интенсивность восстановления	0,96	1,53	1,04

Зависимость эффективности модификации радиационного поражния от временных параметров действия ингибитора можно объясни разной интенсивностью процесса репарации на определенных стади интерфазы.

Известно, что кофеин эффективен при воздействии на стадии G_2 [3, 5, 8]. Нами же выявлено ингибирующее действие его в стадии G_1 .

Различия в эффективности модифицирования кофеина у пшениц различной радиочувствительностью, возможно, обусловлены разниц в способности их к реализации потенциальных повреждений.

Различия во временных параметрах эффективности кофеина, п видимому, можно объяснить разновременным протеканием процесс репарации и реализации радиационных повреждений у пшениц разн плоидности.

Институт экспериментальной биологии АН АрмССР

Поступило 20.VI 1977

Ա. Հ. ՄՈՒՐԱԴՑԱՆ, Վ. Ա. ԱՎԱԳՅԱՆ, Մ. Ե. ԵՂԻԱԶԱՐՅԱՆ

ՃԱՌԱԳԱՅԹԱՅԻՆ ՎՆԱՍՎԱԾՔԻ ԿՈՖԵԻՆՈՎ ՄՈԴԻՖԻԿԱՑԻ<mark>ԱՑԻ</mark> ՔՆՈՒՅԹԸ ԿԱԽՎԱԾ ՆՐԱ ՓՈԽԱԶԴԵՑՈՒԹՅԱՆ ԺԱՄԱՆԱԿ**Ի**Ե ՏԱՐԲԵՐ ՊԼՈՒԴՈՒԹՅԱՆ ՑՈՐԵՆՆԵՐԻ ՄՈՏ

Դի-, տետրա- և հեքսապլոիդ ցորենների օդաչոր սերմերի վրա ուսումն։ աիրվել է քրոմոսոմային աբերացիաների հաճախականությունը ճառագայթ։ Տարումից հետո կոֆեինի անմիջապես, 2, 4, և 6 ժամվա փոխազդեցությ դեպքում։

Պարզվում է, որ վեր<mark>ականգնման պրոց</mark>եսների ինտենսիվությունն <mark>ավե</mark> բարձր է տետրա- և հեքսապլոիդ ցորենների մոտ, այսինքն՝ այդ ձևերի ռա <mark>դիոկայունությունը, դիպլո</mark>իդների համեմատ, պայմանավորված է վերա֊ կանգնման պրոցեսների բարձր մակարդակով։

Կոֆեինի փոխազդեցության արդյունքի տարբերությունները դի֊, տետրա և Հեքսապլոիդ ցորենների նկատմամբ կարելի է բացատրել նրանցում ոչ միաժամանակ ընթացող ռեպարացիայի և ռեալիզացիայի պրոցեսներով։

A. A. MOURADIAN, V. A. AVAKIAN, S. E. EGHIAZARIAN

CHARACTER OF THE MODIFICATION OF RAY DAMAGE ON DIFFERENT FORMS OF TRITICUM L. DEPENDING ON TIME EFFECT

Radiosensitivity of dy-, tetra- and geksaploid wheat has been studied at cytogenetic level during postradiation influence of coffein inhibitor immediately and after 2, 4 and 6 hours after it.

It is found, that intencification of restoration is higher in tetra- and geksaploid wheat.

ЛИТЕРАТУРА

- 1. Jamaguchi H., Yamamoto K. Proc. XII Internat Congr. Genet., Tokyo, 1968.
- 2. Елисеенко Н. Н. Автореф. канд. дисс., М., 1970.
- 3. Ганасси Е. Э., Заичкина С. И., Аптикаева Г. Ф. Радиобнология, 4, 12, 1972.
- 4. Ганасси Е. Э., Заичкина С. И., Аптикаева Г. Ф. Раднобиология, 4, 1973.
- Айказян Э. В. Автореф. канд. дисс., Л., 1973.
- 6. Аптикаева Г. Ф., Ганасси Е. Э., Заичкина С. И. Раднобнология, 4, 12, 1976.
- 7. Мурадян А. А., Авакян В. В. Биологический журнал Армении, 5, 28, 1975.
- 8. Крупнова Г. Ф., Сейтхожаев А. И. Цитология, 8, 16, 1974.
- 9. Ганасси Е. Э. Радиационное повреждение и репарация хромосом. М., 1976.
- 10. Володин В. Г., Гордей Н. И. Радиобиология, 6 16, 1976.