T. XXX, № 7, 1977

УДК 591.181

А. Ш. ПАРСАДАНЯН, Р. З. ХАФИЗОВ, Р. Э. ТИГРАНЯН

МЕТОДИКА ОТВЕДЕНИЯ ЭЛЕКТРОГРАММЫ СЕРДЦА ЦЕЛОСТНОЙ ЛЯГУШКИ В УСЛОВИЯХ ОБЛУЧЕНИЯ СВЧ

В статье описывается методика отведения биоэлектрической активности сердца целостной лягушки без травмирования сердца в условиях облучения импульсным полем СВЧ. Рассматриваются существующие методики отведения с точки зрения их врименяемости в указанных условиях. Дается описацие безартефактных электродов. Приводятся результаты применения предложенной методики отведения в сильных импульоных полях СВЧ и образец документальной записи.

В последнее время большое внимание уделяется эффектам взаимодействия электромагнитного поля СВЧ (сверхвысокие частоты) с биологическими системами. Несмотря на большое количество исследований, проведенных в этой области, и теоретических построений [1], еще имеются «белые пятна». Так, до сих пор совершенно не ясна реакция целостного организма при его облучении электромагнитным полем. Суммируются ли отдельные сдвиги, возникающие в результате воздействия поля на различные локальные уровни сложной биологической системы, давая в итоге ощутимый эффект, или, наоборот, система в целом ослабляет локальные эффекты, включая защитные механизмы. Не исключено, что оба явления имеют место одновременно, с небольшим преобладанием одного над другим. Существует определенный литературный материал, посвященный исследованию воздействия поля СВЧ на использованное сердце различных животных [2-4]. Сравнение результатов этих работ с данными, полученными на целостном организме. могло бы в какой-то мере показать работу защитных средств организма, дать количественную оценку степени развития того или иного эффекта и т. д.

В качестве объекта исследования нами выбрана озерная лягушка. Литературный анализ показал, что большинство электрофизиологических исследований сердца амфибии (лягушки) проведено при вскрытой грудной клетке [5, 6].

Первые обстоятельные иоследования ЭКГ лягушки провел Самойлов [5]. Опыты проводились на лягушках со вскрытой грудной клеткой при помощи трубчатых электродов, заполненных физиологическим раствором (NaCl). Отводящий электрод закреплялся на верхушке желудочка с помощью нитяной лигатуры. Анализируя различные формы ЭКГ, автор приходит к выводу, что они являются результатом суперпозиции разнообразных кривых. Показано, что в электрокардиограммах R-зубец был всегда большим и стабильным. Совершенно произвольным и изменчивым был T-зубец не только по форме, но и по полярности. Такой способ отведения давал возможность регистрировать ЭКГ с амплитудой порядка 20 мв.

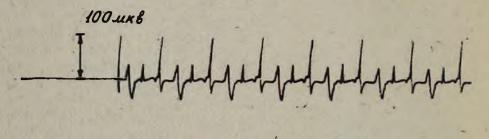
Воронцов [7] исследовал электрограмму сердца лягушки с помощью отводящего электрода, который представлял собой стеклянную канюлю, тонкий конец которой был заполнен раствором желатина в рингеровском растворе; в расширенную часть наливался насыщенный раствор сернокислого раствора цинка, куда погружалась цинковая палочка. Один из таких электродов вводился в желудочек сердца лягушки, а другой электрод постепенно передвигался от верхушки желудочка до предсердий. Записанная таким способом электрограмма все время менялась. Таким образом, величина зубцов в электрограмме, их полярность, а также наличие некоторых из них зависит не от каких-то впутренних свойств сердечной мышцы или протекающих в ней процессов, а обусловливается расположением отводящих электродов на сердце. Сравнивая электрокардиограммы человека с электрограммами сердца лягушки, автор указывает на полное сходство этих записей.

Большой справочный материал по биоэлектрической активности сердца имеется также в книге Рощевского [8].

Дальнейшие исследования ЭКГ лягушки, посвященные конкретным вопросам, например сезонным температурным влияниям на деятельность сердца, факторам, влияющим на восстановление от брадикардии, и другим вопросам, производились при помощи отводящих электродов, изготовленных из металла (медь, нержавеющая сталь, серебро) и представляющих собой иглы, вводимые в грудную клетку области сердца [9, 10].

Электроды подобной конструкции использовались и при исследовании биоэффектов поля СВЧ.

В 1966 г. Левитина [11] провела экоперименты с целью исследования нетеплового действия микроволн на ритм сердечных сокращений у лягушки. Сердечный ритм регистрировался с помощью игольчатых электродов. Результаты опытов показали, что облучение дорсальной стороны тела микроволнами нетепловой интенсивности приводит к отрицательному (замедление ритма), а облучение вентральной стороны тела—положительному хроногропному эффекту (учащение ритма).


Подобные же эксперименты были проведены на изолированном сердце лягушки Фреем [4]. Для отведения электрограммы сердца применялась коаксиальная электродная система, предложенная им же [12].

Однако при внесении в поле СВЧ металлических проводников в них индуцируются токи, которые, детектируясь на входных цепях регистрирующих устройств, могут вызвать подпороговую стимуляцию объекта, а также внести искажения в запись электрического сигнала. Юстировка металлических отводящих электродов в поле СВЧ позволяет снизить величину наведенных токов, однако эта мера полностью не избавляет от возможного артефакта, вносит ощутимые искажения в картину по-

ля и, таким образом, исключает корректную постановку эксперимента. По этой причине из перечисленных выше методик отведения биоэлектрической активности сердца должны быть исключены те, в которых используются металлические электроды.

Кроме того, вскрытие грудной клетки, наложение лигатуры и введение трубчатых зондов непосредственно в сердце являются грубыми приемами, и, хотя в литературе не удалось обнаружить сведений о степени изменения сердечной деятельности в результате этих манипуляций, мы считаем, что было бы желательно исключить непосредственную травму сердца. Это позволило бы максимально приблизиться к нормальным условиям функционирования сердца в целостном организме.

С этой целью нами была использована следующая методика. С грудины, в области сердца, снимался небольшой участок кожи площадью порядка 1 см². На участке, лишенном кожи, располагались два жилкостных безартефактных электрода [13], представляющих собой оттянутые стеклянные трубочки с диаметром кончика 100-200 мк. Другой конец электродов соединялся с трубками из силиконовой резины. При выходе из зоны облучения резиновые трубки помещались в металлический экран. Концы резиновых трубок соединялись с пластмассовыми чашечками, снабженными резиновыми грушами. В этих же чашечках располагались серебряные электроды. Вся система с помощью груш заполнялась раствором Рингера. Таким образом, контакт жидкостьметалл был вынесен из зоны облучения. Облучение объекта произволилось в прямоугольном волноводе (270×150, волна ТЕ₁₀). Участок силиконовых трубок, заключенный в металл, ослабляет СВЧ поле примерно в 1000 раз (30 дб) на погонный сантиметр, и, по существу, является фильтром низких частот [13]. Другими словами, относительно высокое сопротивление таких электродов (десятки килоом) практически не искажает СВЧ поля, подавляет возможные высокочастотные наводки и позволяет с малыми потерями передавать сигнал с объекта на

CEK

Рис. Запись электрограммы сердца целостной лягушки.

регистрирующую аппаратуру. Большим досточнством разработанной электродной системы является отсутствие необходимости юстировки в зоне облучения. Отведенный электрический потенциал сердца регистрировали на электроэнцефалографе. Амплитуда R-зубца в среднем по

серии из 50 объектов составляла 150±50 мкв. При облучении объектов в поле СВЧ с мощностью в импульсе до 100 вт на электрограмме не наблюдались наведенные токи или искажения сигнала по сравнению с контролем. Форма регистрируемой электрограммы тождественна принеденным на фотографиях цитированной литературы. Ниже приводится фотография записи электрограммы сердца целостной лягушки.

Результаты проведенной работы позволяют считать, что предложенная методика подготовки объекта исключает травму сердца и обеспечивает нормальное функционирование объекта в течение неокольких часов; использованная система отведения с помощью жидкостных безартефактных электродов обеспечивает стабильную регистрацию электрограммы сердца целостной лягушки по крайней мере в течение двух часов; безартефактные жидкостные электроды позволяют полностью исключить высокочастотные наводки и обеспечивают четкую запись полезного сигнала.

Институт биологической физики АН СССР

Поступило 11.IV 1977 г.

Ա. Շ. ՓԱՐՍԱԴԱՆՑԱՆ, Ռ. Զ. ԽԱՓԻԶՈՎ, Ռ. Է. ՏԻԳՐԱՆՑԱՆ

ԳՈՐՏԻ ՍՐՏԻ ԱՄԲՈՂՋԱՅԻՆ ՀԵՌԱՑՄԱՆ ԷԼԵԿՏՐՈԳՐԱՄԱՑԻ ՄԵԹՈԴԸ ԳԲՀ ՃԱՌԱԳԱՑԹՄԱՆ ՊԱՅՄԱՆՆԵՐՈՒՄ

Ամփոփում

Հոդվածում նկարագրվում է ամբողջային դորտի սրտի բխոէլակտրական ակտիվության հեռացման մեթոդը, որը կատարվում է առանց սրտին վնասվածք հասցնելու, ԳԲՀ իմպուլսային դաշտով, ճառագայթնման պայմաններոան։

ЛИТЕРАТУРА

- 1. Пресман А. С. Электромагнитные поля и живая природа. М., 1968.
- 2. Пресман А. С., Левитина Н. А. Бюлл. экспер. биол. и мед., 1, 41, 1962.
- 3. Пресман А. С., Левитина Н. А. Бюлл. экспер. биол. и мед., 2, 39, 1962.
- 4. Frey A. H. Life Scienes., 7, (2), 505-512, 1968.
- 5. Samolloff A. Pílüger's Archiv., 135, 417-468, 1910.
- 6. Schaefer H. J. Elektrophysiologie, b. II, Wien, 1942.
- 7. Воронцов Д. С. Общая электрофизиология, М., 1961.
- 8. Рощевский М. П. Эволюционная электрокардиология. Л., 1972.
- 9. Jones D. R. J. Exp. Biol., 44, 397-411, 1966.
- 10. Lung G. F., Dingle H. J. Exp. Biol., 48, 265-27, 1968.
- 11. Левитина Н. А. Бюлл. экспер. биол. и мед., 12, 64, 1966.
- 12. Frey A. H. USA Patent 3.540.434, cl. 128/2.1, 1970.
- 13. Tyazhelov V. V., Tigranian R. E., Khizniak E P. The Journal of Microwave Power, 12, 2, 618-626, 1977.