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Abstract–On the base of the generalized transfer matrix method the problem of electromagnetic wave propagation 
through an arbitrary periodic one-dimensional absorbing medium is considered. Analytical expressions for transmission 
and reflection amplitudes are found. The obtained results are applied to a model system represented by a one-
dimensional periodic array of alternating layers of vacuum and a metal characterized by the complex frequency-
dependent dielectric function. It is shown that in an occupied whole space periodic system a harmonic time wave 
process cannot exist. Independently of the frequency value, this process always attenuates. 
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1. Introduction 

Photonic crystals represent a new kind of optical materials, which possess many interesting 

properties and render many novel applications possible as well [1–6]. The existence of photonic 

band gaps in photonic crystals, owing to multiple Bragg scatterings, leads to many interesting 

phenomena [1–9]. Most photonic crystals fabricated so far are made from two dielectric materials. 

Nowadays, the dielectric photonic crystals (DPC) have been widely studied and received a great 

deal of attention because of its perceived applications, properties and new physical phenomena. 

Usually, photonic band gaps of dielectric photonic crystals are not wide. Combinations of 

metallic and dielectric materials may lead to more interesting properties comparing with dielectric 

photonic crystals. The inclusion of metal sheets into dielectric photonic crystal can increase 

photonic band gaps considerably [10–12]. For example, the absorption of the bulk metal can be 

enhanced by inserting a dielectric layer periodically to one-dimensional metal-dielectric photonic 

crystals. By a proper choice of the structural and material parameters, one can obtain a large 

absorption enhancement in the visible and the infrared ranges [12–14]. In addition, the inclusion of 

periodically spaced thin metallic elements is becoming quite attractive at nanodimensions, where 

metamaterial have already shown quite interesting phenomena. Metal-dielectric photonic crystals, 

as basic stacks of a single dielectric with metallic insets at very low filling fractions (less than 1%), 

were first studied by Kuzmiak and Maradudin [15] using dispersion relations as approximate 

solutions. All those single dielectric structures have no paragon with dielectric photonic crystals, 

where the approach based on a dispersion relation and the transfer matrix method are equivalent. 

Despite the fact that an investigation of one-dimensional periodic structures consisting of 

absorbing layers was a subject of interest for many authors and has a great interest for many years, 
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until now an analytical solution of this problem is unknown. The problem is that the operator of a 

field wave is not Hermitian, so that the flux of electromagnetic wave energy is not conserved. In the 

standard method of transfer matrix [16–17], the complex transmission and reflection amplitudes are 

derived from the elements of the transfer matrix, however the inverse relation between complex 

scattering characteristics and transfer matrix elements is not established. We consider the mentioned 

matter as a main disadvantage of the standard transfer matrix method and it is a main reason why 

for a multilayer system all calculations are performed by numerical methods only. 

In this work, we present a general method of electromagnetic wave propagation in a one-

dimensional absorbing media of an arbitrary shape. We show that for a multilayered structure the 

problem of determination of the scattering amplitudes is reduced to solution of a set of recurrent 

equations. In the case of absorbing media with a continually changing permittivity the problem is 

formulated as an initial condition problem for the wave equation. The developed method is applied 

for discussion of a photonic crystal. Namely, for transmission and reflection amplitudes of a 

photonic crystal analytical expressions are found and absorption band structure is investigated. 

2. Generalized transfer matrix method for an arbitrary one-dimensional absorbing medium 

We consider a harmonic in time electromagnetic waves ( exp{ }i t  ) in a one-dimensional 

absorbing medium. It is well known that the coordinate dependence of the field electric component 

is described by the following equation: 
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In the regions outside the slab the general asymptotic solution of Eq. (1) can be written as  

 1 1 1

2 2 2

exp{ } exp{ }, ,
( )

exp{ } exp{ }, .

A ikx B ikx x x
E x

A ikx B ikx x x

  
    

 (3) 

If 0k   the quantities 1A , 2B  and 1B , 2A  are the amplitudes of convergent and divergent waves. It 

is clear that when 0k  then 1A , 2B  become the amplitudes of divergent waves and 1B , 2A  become 

the amplitudes of convergent waves.  
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In accordance with the transfer matrix method (see [18]) between the amplitudes 1A , 1B  and 

2A , 2B  a linear relation exists: 
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Where , , ,  are the transfer matrix elements and 

 1   . (5) 

Let us consider the left scattering problem, when 0k and the field asymptotic behavior has 

the form of 

 1

2
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 (6) 

where )(),( krkt  are transmission and reflection amplitudes coefficients of the wave incident on the 

slab from the left. Below, mentioned transmission and reflection amplitudes will be defined in 

correspondence with the left scattering problem (6). 

Comparing Eq. (3) and Eq. (6) it is easy to see that 

 11 A , )(1 krB    and  )(2 ktA  , 02 B . (7) 

Substituting Eq. (7) into Eq. (4) and taking into account Eq. (5), one can get 
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The obtained result (8) is the basic formulas of the standard transfer matrix theory, which is usually 

applied for calculation of transmission, reflection and absorption coefficients of a dissipative 

medium. In the case of nonabsorbing media ( ( ) 0x  ) between the transfer matrix elements the 

following nonalgebraic relations exist: *,    *.    

Unfortunately Eq. (8) allows performing numerical calculations only and these formulas are 

not effective to get analytical results. Namely, until now analytical expressions for transmission and 

reflection amplitudes of an electromagnetic wave scattering on a periodic absorbing medium are not 

obtained. In the recent papers [18, 19] a so-called generalized transfer matrix method is developed, 

which as will be shown below, is very efficient both to perform numerical calculations and to obtain 

analytical results. In accordance with the main results of the above-mentioned papers, the transfer 

matrix for an arbitrary absorbing medium has the following form  
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As it is seen from Eq. (9) and Eq. (4) in general case the transformation between the transfer matrix 

elements is realized by mean of changing the sign of the quantity k. Note that for the case of 

nonabsorbing media this action ( kk  ) is equivalent to a complex conjugation action, i.e. 

)()(* ktkt  , )()(* krkr  .  

For consideration of a wave propagation problem for a multilayered system, in the papers 

[19, 20] the following matter is discussed: how the transfer matrix elements are changed when the 

slab is parallel transported on a some distance L . As it was shown 

 ,         and  exp{ 2 }, exp{ 2 }i kL i kL        ,  

where ,  ,    and  are the transfer matrix elements of the transported slab. 

3. Transmission through multilayered structure 

Let us consider the transfer matrix NM̂  of a N-layered structures as a product of transfer 

matrices of the system’s separate layers: 
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In accordance with Eq. (9), the transfer matrix of the system can be written as  
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where NT  and NR  are transmission and reflection amplitudes of the system. A transfer matrix of a 

single layer written with help of the scattering amplitudes can be presented as  
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where nt  and nr  are transmission and reflection amplitudes of a n-th single layer of the system. 

If one considers N  as a variable quantity, when on the base of Eq. (10) and Eq. (11) the 

problem of determination of NT  and NR  can be reduced to the solution of a set of finite-differential 

equations with initial conditions. Indeed, from Eq. (10) and Eq. (11) one can write down 

 1
ˆ ˆN N

N N
N N

M M 

  
    

, (13) 

where 1
ˆ

NM   is the transfer matrix of the system consisting only of the first 1N  layers (without 

the last layer) of the system. Using Eq. (13), Eq. (12) and Eq. (10) one has  
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It is easy to see that the matrix equation (14) is equivalent to the following set of finite-differential 

equations: 
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 (16)  

with the initial condition 

 1)(0 kT , 0)(0 kR . (17) 

Note that the initial condition corresponds to the system without layers, i.e. to the free space motion. 

It is easy to see that with respect to quantities 1 ( )NT k , ( ) ( )N NR k T k   the set of equations (15), 

(16) is linear. In general case of an arbitrary non-regular structure, when the layers of the system 

and the distances between them differ, the set of equations (15), (16) can be solved only 

numerically. As it will be shown below on the base of equations (15), (16) analytical expressions 

for transmission and reflection amplitudes can be derived.  

4. The transfer matrix elements as functions of a slab border point 

It is interesting to apply the result (15)–(17) to the problem of determination of scattering 

amplitudes for a single layer with an arbitrary but continuously changing from point to point 

permittivity. We will follow to the method developed in the papers [20-22], where the scattering 

amplitudes as functions of the slab borders are considered (see Fig. 1). For simplicity we will 

consider a slab with the initial point at 0x . Let us identify a slab having width y  with a N-

layered structure and a slab of width yy   with 1N -layered structure where the last N  layer is 

absent. The last N  layer of the structure will be considered as a layer with small width y . In 

accordance with the above mentioned Eq. (15), (16) one can consider  
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where ( ) 1 ( , )y t k y  . Note that in accordance with Eq. (2) when 1xy   the slab width equals zero 

and the magnitude of 2xy   corresponds to the system whole width. 

To obtain transmission and reflection amplitudes for a thin layer of a width y  we will use 

the well-known formulas corresponding to the uniform slab [17]: 
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where ( ) ( )q y k y  . Considering ( ) 1q y y   and taking into account (1), it is easy to get  
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Fig. 1. Transmission and reflection amplitudes as functions of the slab right border. 
 

Substituting Eq. (18) and Eq. (21) in the set (15), (16) one can found the following set of 

equations for determination of the transfer matrix elements of a slab with a continually changing 

permittivity:  
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with initial conditions 

 1( ) 1x  , 1( ) 0x  . (24) 

Equations for the transfer matrix elements ( )x , ( )x  ( ( ) 1 ( , )x t k x   , ( ) ( , ) ( , )x r k x t k x   ) 

are obtained from Eq. (22) and Eq. (23) by changing k  by k : 
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( ) ( ) ( ) exp{ 2 }
2 2
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x x x i kx

dx k k
     , (26) 

with initial conditions 

 1( ) 1x  , 1( ) 0x  . (27) 

It is easy to see that the pairs of quantities ( )x , ( )x  and ( )x , ( )x  satisfy the same set of 

equations but initial conditions for them are different. Note that in case of a nonabsorbing slab 
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( )(xu  is a real function) the set of equations (22), (23) are the complex conjugate with respect to the 

set (25), (26).  

So we have shown that the problem of determination of scattering amplitudes for an 

absorbing slab with an arbitrary continually changing )(x is reduced to Cauchy problem for a set 

of linear differential equations. It is important to mention that the set of equations (22), (23) (or 

(25), (26)) are very useful for a numerical integration but these equations are not applicable for 

analytical calculations. By using equations (22), (23) and (25) it is possible to show that the 

problem of determination of transfer matrix elements can be formulated as an initial type of 

problem for the wave equation (2): 

 1 1 2
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where )(1 x , )(2 x  satisfy the wave equation (2): 

  
2

1,2 2
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( ) 0
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k V x
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    , (30) 

with the initial conditions 

 1 1( ) 1x  , 1 1( ) 0d x dx    and  2 1( ) 0x  , 2 1( ) 1d x dx  . (31) 

It is important to mention that due to the fact that the equation (30) contains only 2k  the expressions 

for ( )x , ( )x  can be obtained from (28), (29) by changing k  by k . Note that determination of 

the transfer matrix elements in the form of the initial problem (28)–(31) is useful both for analytical 

and numerical calculations. This result is a generalization of the corresponding formulas of the 

paper [23] obtained for media without dissipation.  

5. Scattering on an ideal transfer structure 

Let us consider a layered structure, when the layers are identical and equidistantly located. At 

this step of consideration, we do not assume that a single layer structure must be uniform or that we 

explicitly know the dependence of the transfer matrix elements on the frequency of an incident 

radiation and the parameters of a scattering layer. For the considered layered structure the 

permittivity is characterized by the following dependence: 

 
1

( ) ( )
N

n
n

V x V x


  , (32) 

where ( )nV x  relates to the n-th layer of the system, which is presented by means of the function 

)(1 xV , defining the optical properties of the first layer, in accordance with the following relation  
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 1( ) ( ( 1) )nV x V x n L   ,  1, 2n N  , (33) 

where L is the system period. 

Denoting the border points of the first layer as 1 2,y y  ( 1 2y y ), one can write down 

  
2

1 1 22
( ) 1 ( ) ( ) ( )u x x x y y x

c


       , (34) 

where ( ) ( ) ( )x x i x       is the permittivity of the first layer and ( )x  is the step function. Note 

that the possible value of the period L  should be considered more than a width magnitude of a 

single layer ( 2 1( )L y y  ), otherwise an overlapping of neighbor layers will take place.  

Let us consider a relation between the transfer matrix elements of the system’s n -th layer and 

the transfer matrix elements of its first layer. In accordance with the last equation of the section 2, 

one can write down 

 ,n n      , exp{ 2 ( 1)}, exp{ 2 ( 1)}n ni kL n i kL n         , (35) 

where for simplicity we denoted the transfer matrix elements of the first layer as 1 ,    1 ,    

1 ,    1 .    

Using Eq. (35), the set of equations (15), (16) can be written as  
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with initial conditions 

 0 ( ) 1T k  , 0 ( ) 0R k  . (38) 

Note that here the quantities )(kt  and )(kr  are transmission and reflection amplitudes of the 

structure’s first layer: 1 ( )t k   , ( ) ( )r k t k   . 

The set of equations (15), (16) can be solved by means of different methods and its solution 

has the form  
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where we introduced the following notation: 
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For case of nonabsorbing media (as it was mentioned above, for that case the equality 

*( ) ( )t k t k   takes place) the result (39)–(41) is reduced to the corresponding formulas of the paper 

[22]. Note that the quantity  can take either real or purely imagine value since in this case the right 

side of the equality (41) is a real quantity:  cos Re exp{ } ( )L ikL t k   . However, in the more 

general case of absorbing media  has a complex value and as a function of k  it is an even function 

( ( ) ( )k k    ). The obtained formulas (39)–(41) express the explicit dependences of the system 

scattering amplitudes NT , NR  on the number of layers N  and the scattering amplitudes t, r  of the 

element of the system structure. Despite the fact that Eqs. (39)–(41) are analytical expressions for 

their investigation there is a necessity in additional discussions.  

6. Photonic crystal with a two-layered structure element 

Below we will examine the obtained result (39)-(41) for a photonic crystal with a two-layered 

structure element. Let us suppose that the structure element consists of two homogeneous and 

contacting with each other layers of widths 1a , 2a , so that the period of the photonic crystal is 

21 aaL  . To determine the transmission and reflection amplitudes of a two-layered structure t  

and r  (see Eq. (39)-(41)) we will use the formulas (15), (16): 
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where ( )jt , ( )jr  ( 1, 2j  ) are the transmission and reflection amplitudes of the first and second 

layers of the structure elements, correspondingly: 
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where j jq k  , k c   and 1 , 2  are the permittivities of the layers. In Eq. (45) jb  is the 

coordinate of the middle point of the structure element layer. So, if the initial point of the first 

structure element coincides with a coordinate origin then 11 ab  , 212 2 aab  .  

Substituting Eqs. (44), (45) in Eq. (42) from Eq. (41) one can write  

 
2 2
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1 1 2 2 1 1 2 2
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q q
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q q
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which is the well-known expression for the quasi-wave number that determines the relationship 

between the wave damping in a superlattice and damping for a single layer forming this structure 

(see, for example, [17]). 

Below we will apply the result (39)–(46) for a specific structure, namely, we consider a one-

dimensional photonic crystal on the base of nanocomposite: metal nanoparticle–dielectric matrix. 

Note that the composite media with nanoparticles of noble metals are of great practical interest in 

the development of various optical devices [23, 24]. It is clear that the optical properties of such 

media are determined by plasma oscillations in the nanoparticles and the properties of a transparent 

matrix. 

We calculate the transmission, reflection and absorption coefficients of a one-dimensional 

photonic crystal consisting of nanocomposite metal nanoparticles which are randomly distributed in 

a transparent matrix. To determine the permittivity of the nanocomposite ( )mix   we use the 

Maxwell–Garnett formula: 

 
( ) ( )

( ) 2 ( ) 2
mix d m d

mix d m d

f
       


       

, (47) 

where f  is the relative volume occupied by nanoparticles, ( )m   is the permittivity of the metal 

material of the nanoparticle, d  is the dielectric constant of the matrix, and  is the frequency of 

radiation. 

 

 

 

 

 

 

 

 

Fig. 2. Dependences of ( ), ( )mix mix      on the dimensionless frequency. 

 

Using Eq. (47) one can write 

 
( )(1 2 ) 2 ( 1)
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. (48) 

As it follows from Eq. (48), when 1f  (the whole volume of the matrix is occupied by metal 

nanoparticles) we have mix m   , when 0f  (in the volume of the matrix there are no metal 
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nanoparticles) mix d   . The dielectric constant of the metal nanoparticles is determined in 

accordance with the Drude model: 
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where 0  is a constant, p  is the plasma frequency,  the relaxation constant. In the case of silver 

(see [25]) 0 5  , 9p   eV, 0.02   eV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Dependences of transmission, reflection and absorption coefficients on the dimensionless frequency 
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Further, in all numerical calculations we consider a nanocomposite based on silver. In the Fig. 

2 we presented the dependences of ( ),mix   ( )mix   on the dimensionless frequency p  . As it 

can be seen from the figure, the both curves have a resonant character. In Fig. 3 we plotted the 

dependences of transmission, reflection and absorption coefficients on the dimensionless frequency 

p  . The calculation was made for a photonic crystal consisting of 16 cells, each of which 

contains two layers – a nanocomposite layer of width 2a  with permittivity ( )mix   and a vacuum 

layer of width 2a . The filling factor f  was taken as 2.0f . For performing of corresponding 
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calculations the sizes of the layers were considered in units of the plasma wavelength 

( 2p pc    ). The width of the layers were chosen to be equal to each other and the period of the 

structure to be equal to p  ( 1 2L a a  , 1 2a a  and pL   ). 

As it can be seen from the upper curve of Fig. 3, for the region of frequencies being under 

consideration there are two bands of non-transparency and with increasing of a frequency value the 

bandwidth decreases. We also note that there is no frequency value where the transmission 

coefficient takes a value being equal to unity. On this base one can conclude that when a periodic 

absorbing media occupies the whole space, then in that system any wave process is doomed to 

attenuation. As it follows from the middle and lower curves of Fig. 3, the reason of existing a wave 

non-transparency band may serve as a reflection and absorption. 

7. Conclusion 

In this paper on the base of the generalized transfer matrix method the problem of 

electromagnetic wave propagation through an arbitrary periodic one-dimensional absorbing media 

was considered. It is shown that for an arbitrary layered structure the problem of determination of 

scattering amplitudes is reduced to solution of some set of recurrent equations. This result was 

applied to a photonic crystal with an arbitrary form of a structure element. Analytical expressions 

for the transmission and reflection amplitudes as functions of the number of photonic crystal cells 

are found.  

The obtained expressions were considered for a model system representing a one-dimensional 

periodic array of alternating layers of vacuum and a metal characterized by the complex frequency-

dependent dielectric function. It was shown that in an occupied whole space periodic system a 

harmonic time wave process cannot exist. It means that any wave process always attenuates. 
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