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Abstract–The Hamiltonian describing the stretching vibrational spectra of polyatomic molecules is calculated within 
the framework of vibron model by using the dynamical U(2) Lie algebra. Here every C-C bond of the molecule is 
replaced by a corresponding Lie algebra and finally the Hamiltonian is constructed considering the interacting Casimir 
and Majorana operators. The fundamental stretching vibrational energy levels of the carbon C50 and C84 clusters are then 
calculated using this Hamiltonian to fit the experimental results.  
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1. Introduction 

Since the discovery of fullerenes in carbon soot [1], many spectroscopic techniques have been 

utilized to identify the cage-like carbon structures. These identification techniques include infrared 

spectroscopy (IR) [2–8], nuclear magnetic resonance (NMR) [9-10], mass spectrometry (MS) 

[11–13], ultraviolet–visible spectroscopy (UV–VIS) [14], or a combination of these techniques 

[15, 16]. To analyse these experimental data, there are many theoretical approaches for calculation 

of vibrational frequencies, which belong to quantum mechanical potential approach and Dunham 

expansion method [17–26]. Despite intense effort and significant progress, the accuracy and 

reliability of theoretical calculations is still lagging far behind especially in the region of high 

overtones. To improve this situation, in recent years, algebraic models, such as Lie algebraic 

methods [27, 28] and the boson-realization model [29], have been proposed for descriptions of 

vibrations, rotations, and rotation-vibration interactions in polyatomic molecules. Lie algebraic 

methods for diatomic molecules have been modified by the corresponding quantum algebra 

[30, 31], and the boson-realization model has been developed for the higher vibrational states of 

polyatomic molecules in terms of q-deformed oscillators [32, 33]. In this study we use only the Lie 

algebraic approach. The basic element of this approach is the introduction of a set of bosons, 

referred to as vibrons, in terms of which the space of states of the molecule can be built. In Lie 

algebraic approaches, U(4) and U(2) algebraic models have been extensively used. The U(4) model 

took the rotation and the vibration into account simultaneously, but became quite complicated when 

the number of atoms in a molecule increased to larger than four. The U(2) model was particularly 
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successful in explaining stretching vibrations of polyatomic molecules such as benzene-like and 

octahedral systems [34, 35]. This model was extended to deal with both stretching and bending 

vibrations in triatomic molecules [36]. Using this approach Sarkar et al. [37] recently reported better 

results for the vibrational energy levels of HCN, OCS, HCP, HCCF, HCCD than those reported 

earlier. Moreover, the U(2) algebraic model was particularly successful in explaining stretching 

vibrations of polyatomic molecules such as octahedral, benzene and pyrrole-like molecules [38–40]. 

But yet, there is no such paper has been reported so far, describing the large carbon cluster like 

fullerenes by this method. As such, we applied the Lie algebraic method to describe the vibrational 

frequencies of C50 and C84. 

The C50 and C84 molecules belong to class of spheroidal carbon clusters (fullerenes). These 

molecules have significantly lower symmetry as compared to C60. As a result, there are a large 

number of allowed infrared and Raman modes for these molecules. The vibrational frequencies of 

C50 and C84 have been reported by several groups with different quantum mechanical approaches 

[41–43]. Bakowies et al. [41] calculated the vibrational frequencies of C50 by MNDO (Modified 

Neglect of Differential Overlap) method, which is a semi-empirical method for the quantum 

calculation of molecular electronic structure in computational chemistry. Negri et al. [42] calculated 

vibrational frequencies of C84 by QCFF/PI (Quantum-mechanical Consistent Force Field Method 

for Pi-Electron Systems) approach, but yet there have been no sophisticated experimental 

investigations on vibrational spectrum of these molecules. In this paper, we also attempted the Lie 

algebraic approach to study the vibrational stretching modes of C50 and C84 in one dimensional 

framework comparing with the other theoretical approaches. 

2. The algebraic theory 

In this study we apply the one-dimensional algebraic model consisting of formal 

replacement of the interaction bond coordinate with unitary algebra U(2). With this algebraic 

formulation, one can attain algebraic expressions of eigen values and eigen vectors even for a 

complex Hamiltonian operator, including intermode coupling terms as well as expectation values of 

any operator. Moreover, this algebraic approach has the following advantages over the conventional 

Dunham like expansions [39]:  

(i) The algebraic models lead to a local Hamiltonian formulation of the physical problem. 

(ii) Its expansions are intrinsically anharmonic at their zero-order approximation. 

These two factors reduce drastically the number of arbitrary parameters in comparison to the 

harmonic series for medium and large size molecules. However, in the local Hamiltonian 

formulations, the actual eigen vectors of the physical system cannot be directly accessed through 

diagonalization of the Hamiltonian operators. Beside this disadvantage, the local Hamiltonian 



Armenian Journal of Physics, 2011, vol. 4, issue 1 

51 

formulation can be used in the systematic study of highly excited overtones of the polyatomic 

molecules. 

The motivation for the construction of this algebraic model is the isomorphism of the one-

dimensional Lie algebra, U(2), with that of the one-dimensional Morse oscillator, which is a good 

description of a stretching vibration of a molecule. The Hamiltonian of the one-dimensional 

Schrödinger equation with Morse potential is 

 ( ) ( ) 22, 1 exp ,
2
ph p x D x= + − −α⎡ ⎤⎣ ⎦μ

 (1) 

which can be put into one-to-one correspondence with the representation of the algebra 

( ) ( )2 2U O⊃  characterized by the quantum numbers ,N m  with the provision that one takes only 

the positive branch of m, i.e., , 1, 2, ,1m N N N= − − …  or 0 for odd or even N (N = integer). Thus 

the Hamiltonian corresponding to the Morse potential on the basis of U(2) algebra is given by  

  0 ,H AC= ε +   (2) 

where C is the invariant operator of O(2), with eigen values ( )2 2m N− . So, the eigen values of H 

are 

  ( )2 2
0 .E A m N= ε + −   (3) 

Introducing the vibrational quantum number ( ) 2,v n m= −  one can write the eigen value as  

 ( )2
0 4E A Nv v= ε − −  (4) 

with 0,1, , 2v N= …  or ( )1 2N −  (for even or odd N). 

According to the algebraic theory [27], polyatomic molecules consist of the separate 

quantization of rotations and vibrations in terms of vector coordinates 1,r  2 ,r  3 ,r …  quantized by the 

algebra 

 ( ) ( ) ( )1 2 32 2 2 .G U U U≡ ⊗ ⊗ ""   

We introduce U(2) Lie algebra to describe n stretching bonds (C-C). The two possible chains of 

molecular dynamical groups in these molecules are  

  ( ) ( ) ( ) ( ) ( )1 12 2 2 2 2 ,n nU U O O O⊗ ⊗− ⊃ ⊗ ⊗ ⊃… …   (5) 

  ( ) ( ) ( ) ( )1 2 2 2 2 ,nU U U O⊗ ⊗ ⊃ ⊃…  (6) 

which correspond to local and normal coupling, respectively. The coupling to final O(2) group in 

the first chain is carried out though different intermediate couplings ( )2ijO  and the second chain 

arises from all the possible couplings of ( )2iU  groups to obtain a total U(2) group, which in turn 

contains the final O(2) group [40]. For these two situations the Hamiltonian operator can be 
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diagonalized analytically. The common algebraic model Hamiltonian in the case of stretching for 

these molecules can be considered as [37] 

 0
1 / /

,
n n n

i i ij ij ij ij
i i j i j

H E AC A C M
=

= + + + λ∑ ∑ ∑   (7) 

where iC , ijC  and ijM  are the algebraic operators. In the local basis the operators iC ’s are diagonal 

matrices with eigen values 

  ( )2, , 4 .i i i i i i i iN v C N v N v v〈 〉 = − −   (8) 

The couplings between the bonds are introduced by the operators ijC  and ijM  called Casimir and 

Majorana operators, respectively. The Casimir operator has only the diagonal matrix element, 

whereas the Majorana operators have both diagonal and non-diagonal matrix elements, which are 

given by 

  
( )( ) ( )2

, ; , , ; , 4 ,i i j j ij i i j j i j i j i jN v N v C N v N v v v N N v v⎡ ⎤〈 〉 = − + + − +⎢ ⎥⎣ ⎦   (9) 

  , ; , , ; , 2 ,i i j j ij i i j j i j j i i jN v N v M N v N v v N v N v v〈 〉 = + −   (10) 

  ( )( ) ( ), 1; , 1 , ; , 1 1 ,i i j j ij i i j j j i i i j jN v N v M N v N v v v N v N v〈 + − 〉 = − + − + − +   (11) 

  ( )( ) ( ), 1; , 1 , ; , 1 1 .i i j j ij i i j j i j j j i iN v N v M N v N v v v N v N v〈 − + 〉 = − + − + − +  (12) 

Thus the eigen values of the Hamiltonian can be easily evaluated which provide a description of 

coupled anharmonic vibrators. 

3. Result and Discussion 

In the algebraic theory, we introduce the vibron number N which is directly related to the 

anharmonicity of the local C-C stretching bonds. Firstly, the value of vibron number N is 

determined by the relation [27] 

  ( ) 1,e e eN x= ω ω −   (13) 

where, eω  and e exω  are the spectroscopic constants of diatomic molecules of stretching interaction 

of the molecule considered. The value of N has to be taken as the initial guess, depending on the 

specific molecular structure. One can expect a change of 20% of the value of N. 

Secondly, the value of the parameter A can be obtained from the single-oscillator fundamental 

mode as  

 ( ) ( )1 4 1 ,E v A N= = − −  (14) 

Lastly, in the third step one has to obtain an initial guess for the parameters λ and ′λ  of the 

Majorana operators, the role of which is to degenerate the local modes. The value of these 
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parameters can be calculated by considering the matrix structure of the molecules. By using a 

numerical fitting procedure (in a least square sense) one can adjust the values of the parameters N, 

A, ,λ  ′λ  and A′  (whose initial value can be taken as zero) to fit the experimental results. 

The fitting parameters used in the study of vibrational spectra of fullerene C70 is given in 

Table 1. 
Table 1. Fitting parametersa of fullerene C50. 

Vibron number Stretching parameters 
N A λ  ′λ  

140 −1.448 0.057 −0.0345 
a A, λ, ′λ  all are in cm−1 whereas N is dimensionless 

Table 2. Simulated and calculated energies (cm−1) of fullerene C50 [42]. 

Normal level I [42] II Calculated Δ (I–II) 

1v  776 776.108 −0.108 

2v  805 805.088 −0.088 

3v  821 821.048 −0.048 

4v  891 884.888 +6.112 

5v  1148 1143.792 +4.208 

6v  1257 1255.512 +1.488 

7v  1560 1562.296 −2.296 

8v  1600 1600.516 −0.516 

9v  1714 1712.236 +1.764 

The fitting parameters used in the study of vibrational spectra of fullerene C84 is given in 

Table 3. 

Table 3. Fitting parametersb of Fullerene C84. 

Vibron number Stretching parameters 

N A λ  ′λ  
140 −0.624 0.678 −0.159 

b A, λ, ′λ  all are in cm−1 whereas N is dimensionless. 

Table 4. Simulated and calculated energies (cm−1) of fullerene C84 [41]. 

Normal level I, [41] II, Calculated Δ(I–II) 

1v  346 347.00 - 1.00 

2v  480 480.56 - 0.56 

3v  536 536.84 - 0.84 

4v  722 719.96 + 2.04 

5v  826 818.24 + 7.76 

6v  896 888.80 + 7.20 
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4. Conclusion 

The algebraic model presented here is a model of coupled one-dimensional Morse oscillators 

describing the C-C stretching vibrations of the polyatomic molecules C50 and C84. By this method, 

we overcome the hurdle of complicated integrations in the solution of coupled differential 

Schrödinger equations of polyatomic molecules. At the same time, the number of parameters in this 

case is also much less as compared to the traditional Dunham expansion calculations. Moreover by 

this method the hitherto unknown states can also be predicted which help enormously to detect the 

state experimentally. In this paper we presented only a few modes of vibrations of C50 and C84 

which are in good agreement with other semi-empirical simulated result. Since the approach is very 

much successful in explaining the vibrational frequencies of the simple polyatomic molecules, so it 

is hoped that with the further advancement of this U(2) model, the higher order modes of vibrations 

of the molecules can also be explained.  
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