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Abstract: We consider the spin-dependent transport properties of an unpolarized electron beam through a multilayer 
system containing two magnetic barriers with different orientations of magnetizations. The dependences of the 
transmission coefficient and degree of polarization of transmitted electrons on the angle between the magnetization 
vectors of barriers and energy of electrons are calculated using transfer-matrix approach. It is found that at the 
resonance tunneling this dependence should manifest itself quite strongly. 

 

1. In the world of spin-based-electronics or emerging field of “spintronics” one tries to use the 

electron spin and its sensitivity to carry the spin polarized current. The most prominent perspective 

in the “spintronics” is the quantum transport of spin-polarized carriers in nanosystems and 

nanostructures, as well as controlling the spin tunneling properties. This becomes very actual 

problem for the development of so-called spintronic devices, such as spin filters, fuel injectors, 

analyzers of the spin polarization, etc. controlled by spin polarization or an external magnetic field 

[1,2]. 

For example, in [3] it is shown that the most effective method of detection of spin-polarized 

electrons is a resonant tunneling of electrons through the double-barrier system. Several techniques 

were proposed to achieve spin filtering such as magnetic tunnel junctions comprised of half-

metallic compounds. An alternative method consists in using spin-dependent resonant tunneling 

through magnetically active quantum wells. Recent advances in molecular beam epitaxial growth 

made it possible to fabricate exotic heterostructures comprised of magnetic films or buried layers 

(ErAs, GaxMn1xAs) integrated with conventional semiconductors (GaAs) and to explore quantum 

transport in these heterostructures [4]. This increasing in interest spin-dependent resonant tunneling 

in double-barrier heterostructures stems from two major factors. First, there has been a lot of study 

of electronic and magnetic transport properties of semiconductor heterostructures greatly sensitive 

to electron spin. The second, the spin-dependent polarization in one-dimensional structures strongly 

depends on interfacial magnetic properties (multilayers) or number of magnetic barriers. However, 

often the various orientations of magnetization in barriers with the magnetic-barrier field have been 

overlooked [5,6]. Magnetic barriers are different from the potential barriers since the transmission 

depends not only on the energy of spatially quantized electrons but also the orientation on which 

electrons move toward barriers.  current investigation is on electron tunneling through a system of 

two magnetized barriers with noncollinear magnetization vectors. The coefficients of transmission 

and spin polarization are obtained and dependences on the angle between magnetization vectors 1M  
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and 2M (noncollinearity angle) in the transmission characteristics are analyzed away from the 

resonances and exactly in the resonance as well. The proposed model for the quantum tunneling in 

the single and double-barrier systems is described in Section 2. The results of the transmission 

coefficient and polarization efficiency obtained by transfer matrix approach are presented in 

Sections 3 and 4. The conclusion is provided in Section 5. 

 
 
 
 
 
 
 
 
 

Fig. 1. Energy profile of two (magnetically) active layers 2 and 4 corresponding to barriers with magnetization 

1M  and 2M  with angle between them. 
 

2. Let us consider an electron transmission through double-barrier heterostructure consisting 

of five layers, with magnetically active 2 and 4 interfaces, where the separation between the two 

adjacent magnetic barriers is c and the barrier width is a. Band gaps of the materials are selected 

such that the potential relief for the system contains two magnetic barriers of the same height shown 

schematically in Fig.1. The spin interaction of an electron with a barrier is described by the local 

spin-dependent term in the magnetic Hamiltonian  

    int 0H V y   Mσ ,  

where 0V  is the height of the barrier, 02 ,Bg     g is the g-factor of the electron, B  is the Bohr 

magneton, 0  is the magnetic constant. Here we neglect the orbital effect which is well satisfied for 

the condition, 0 2     ( is the magnetic flux through the lateral edge of the magnetic layer 

whose width is 0  is an elementary flux). We consider the magnetization of barriers of equal in 

amplitude that are in the plane of the interface forming an angle , i.e.,   2
1 2 cosM  M M . 

The scattering wave function has the form  
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where ˆ,I  ˆ,r  t̂  are the spinor amplitudes of the incident, reflected and transmitted waves, 

respectively, the factor 1 22  before r̂  and t̂  in (1) is introduced for convenience. The amplitude of 

the incident wave I we choose as  
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where  is undefined phase, over which the final terms (the transmission coefficient, the spin 

polarization) should be averaged (over an ensemble of incident particles). This choice is dictated by 

the amplitude of the incident wave so that an average spin (polarization of the incident wave) in the 

states (2) after averaging over  becomes zero. This is actually way how we define the polarity of 

the incident electron wave. First we consider the scattering of unpolarized electron wave by 

choosing a single rectangular barrier      y y a y     for  x  is a step function, and the 

direction of magnetization M is taken as the quantization axis. Then we find 
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kII  is the wave-vector component parallel to interface, that is equal in all regions, 1,2m  is the 

effective masses of electrons in the nonmagnetic and magnetic layers, respectively. In the case 

where the scattering occurs on a system of two identical barriers (the same height and 

magnetization) the corresponding transmission amplitudes are [7] 
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where c is the distance between the barriers t  and r  defined in (3), and transmission coefficient is  

  2 2

0 0 01 02

1 1ˆ ˆ
2 2

D T T T T D D
       (5) 

It follows from (4) and (5) that the averaging in this case over the phase  a mere formality since 

the squares of modules 0T   simply do not contain the -dependence. The reason is that non-

polarized beam of electrons is a mixture of two beams of equal density with the polarizations 

parallel and opposite to M respectively. 

Electron energy, corresponding to the resonance tunneling is determined from the equation  

  1 2 ,kc n      (6) 
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where  
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is a phase of transmission amplitudes for a single barrier.  

3. We now consider the electron tunneling through a system of two magnetic barriers with 

noncollinear magnetizations. For this purpose we constructed the following transfer matrix [8] 

 

   
   

* *

1 1 1

2 2 2

cos 2 sin 2
, ,

sin 2 cos 2

1 0 0
, ,

0 1 0

U U U U
S U

U U U U

t r t

t r t

 

 

      
           

   
      

   

 (8) 

Then we introduce the following matrix equation: 
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where T and R  are amplitudes of transmitted and reflected waves, respectively,  
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and the transmission coefficient for unpolarized wave in the approximation 0M V   obtain  

   2 2cos 2 sin ,
2 2

D D D D D   

 
    (11a) 

where D  and D  defined in (5), or, equivalently,  

  2 2 2 21
,

2
D T T T T        (11b) 

where  , ,ijT i j    is the amplitudes of electron without and with the spin flip, and for 0,    

we find , 0,T T    which implies that electron tunneling occurs without spin flip. On the other 

hand at any nonzero values of  amplitudes ,T T   not vanish.  

Maximum D is achieved for collinear magnetization barriers  0 :   maxD D D    and the 

minimum value min 2D D D   for anticollinear magnetization. We find that minD  is small even at 

resonance. At the non-resonant tunneling the dependence on  is also rather weak (Fig. 2):  
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where 0D  is the transmission coefficient in the absence of magnetization  0M  . 
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In the case of resonant tunneling (i.e., 1 2D   reaches maximum and) D  becomes exponentially 

small) dependence on  becomes significant (Fig.2) 

 21
2 cos .

2 2rezD D


   (13) 

 
Fig. 2. Dependence of the transmission coefficient on the dimensionless electron energy x and orientation angle . 

 

The maximum of the transmission coefficient rezD  as a function of the energy parameter 

0 ,x E V  is due to the presence of two groups of resonance transmission – for the spin up and spin 

down Note that the dependence on the angle  in the transmission coefficient and conductance is 

the same. Thus, Fig. 2 describes the transmission coefficient D (spin-dependent conductance) for 

electron tunneling through double barrier system as a function of an angle  for magnetization 

between two magnetic barriers and energy parameter x of transmitted electrons. It is evident that the 

spin-dependent tunneling in the absence of magnetic field exhibits (double peak) symmetric 

structure as a function of 0E V  and an angle q. The spin transport is significantly suppressed for 

anticollinear orientation of magnetizations in barriers. 

4. Knowing the amplitude transmission one can calculate the vector of spin polarization of 

electrons, tunneled through the double-barrier system:  

 5 5 5 5ˆ ˆ ˆ ˆˆ     P σ  (14) 

where P is the polarization, brackets correspond to the quantum mechanical averaging, and the 

horizontal line – over an ensemble of incident electrons (in phase  see Eq. (2)), and the degree of 

polarization   2 2 2
x y zP P P P     [9].  
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We will not give the exact expressions for  , ,iP i x y z  obtained from (14), but give only the 

results of their research. The simplest form of iP  one can get in the case of parallel magnetization 

 0 :   

 0 , .x y z

D D
P P P

D D
 

 


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
 (15) 

Thus, the spin polarization efficiency zP  determines the difference of transparency for the spin 

states with up and down through the barrier. Far from the resonance transmission we have 

0 1zP M V    and unity with an accuracy up to exponentially small terms in the resonance 

transmission.  

In the case of noncollinear magnetizations barriers in the non-resonant tunneling  

  2

0 , 0~ , ~ .x y zP M V P M V   (16) 

At the resonant quantum tunneling the dependence of the degree of polarization on  is quite weak, 

and near     there is a failure to zero. This dependence is determined by the formula  

    2cos 2 2 ,rezP D    (17) 

where rezD  is defined by (13). 

 
Fig. 3. Dependence of the degree of polarization of transmitted electron on the orientation  and electron nergy 
parameter x. 

 

The existence of two peaks under the variation of x as well as in the behavior  ,D D x

(Fig. 2) is due to the presence of two groups of resonance energies. Because of the smallness of the 
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parameter 0M V  the energies are located close enough to each other. On the other hand, the 

energies far from the resonant values there is a substantial drop in the degree of polarization.  

 
Fig. 4. Nearby the transmittance resonance at  there is a peep dip in behavior P = P(). 

 

Qualitatively, this behavior can be explained as follows: consider a unit (beam) stream of non-

polarized electrons falls on the left barrier: 1 ,I I I I       where 
,

I   are the fluxes of 

polarization along and against of the left barrier magnetization. In resonant tunneling, in the case 

when the barriers are having collinear magnetization, the flux through the system is 1 2  up to 

exponentially small term. When rotating the magnetization of the right barrier at an angle , it 

makes the flux    21 2 cos 2 . If ,    the flux of electrons, tunneled through the right barrier 

with mutually opposite orientations of the polarization, decays exponentially, and hence the 

polarization of the transmitted flux is negligibly small. Fig. 3 presents the strong spin-dependent 

polarization for electron tunneling through the double magnetic barriers in the absence of the 

external magnetic field. The polarization is strongly dependent on the electron energy E. For some 

intermediate energy, the electrons exhibit a strong double peak behavior in spin polarization and 

transmittance, while for large and small electron energies, the spin polarization is weakened. The 

spin polarization also is strongly weakened for anticollinear orientation of magnetization in barriers. 

As it is evident from Figs. 2 and 3, there is a strong correlation in behavior of spin polarization and 

electron tunneling transport for general  and x. Let us note that such dependence of polarization 

degree on the angle  shows that there exist spin-valve effect in the subject system [10]. This effect 

manifests itself most clearly nearby the transmittance resonance (Fig. 4) 
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5. Our results imply strongly  that the system consisting of two magnetized barriers can 

effectively work as a spin polarizer, only at the resonance transmission. At the same time and the 

transmission coefficient and the degree of polarization of the transmitted electron beam is strongly 

dependent on the angle of noncollinearity . Our calculations show a considerable influence of the 

angle of noncollinearity on spin-dependent polarization and the tunneling transmission 

characteristics. The double magnetic barrier structure can provide conditions for strong dependence 

of the tunneling transmission and spin-dependent polarization in the absence of magnetic field and 

this effect can be employed in the fabrication of spin filters on the base of heterostructures. These 

results can be also useful for understanding the spin-dependent transmission characteristics under 

the variation of the noncollinearity in the nanostructures consisting of realistic magnetic barriers 

produced by the deposition of ferromagnetic stripes on heterostructures or system containing diluted 

magnetic semiconductor layers [11]. These features also demonstrate that a much larger spin 

polarization or much better spin-filtering properties for magnetic barriers can be obtained by both 

using the proper electron energy parameter x and also by adjusting the angle  between 

magnetization of ferromagnetic interfaces, which may be useful for control and fabrication of spin 

devices based on such magnetic barriers. This approach can be extended to calculate and understand 

the electron transport properties and polarization also in two dimensional structures or system with 

the number of periodic magnetic barriers or asymmetrical (magnetic) double barrier structures. 
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