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Abstract: The Harrison’s First Principle (HFP) pseudopotential technique an orthogonalized plane wave (OPW) 
method has been applied to study the liquid electrical resistivity. Also, Knight shift, Fermi energy and electronic density 
of states (DOS) of liquid binary alloys of simple metals have been calculated. Reasonable agreement with experiment 
has been obtained. The binary alloy is regarded as being a quasi-single component system. We have also performed the 
first-principles calculation of the electronic band structure of Cd-Zn alloy employing full-potential Linearized 
augmented plane wave (FLAPW) method. Total energy minimization enables us to estimate the equilibrium volume, 
bulk modulus and its pressure derivative. We have also described the total density of states (DOS) and the partial DOS 
(PDOS) around the Fermi energy. 
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1. Introduction 

The study of the transport properties of liquid metals binary alloys is important for various 

chemical as well as metallurgical purposes. The Cd-Zn alloys are a subject of matter of 

investigation since past few decades as this alloy consists of industrially important materials due to 

their application in nanocrystals (CdZnS) and optoelectronics (CdZnTe). Alcock calculated the 

thermodynamics of binary and dilute ternary alloys and discussed in terms of the electron theory of 

metals and the constant pair-wise binding model [1]. Landa et al. have calculated the velocity of 

sound in liquid Cd-Zn alloys [2]. Kumar et al. have presented the thermodynamic properties of 

mixing of Cd-Zn liquid alloy applying complex formation model (CFM) [3]. 

The well-known electrical conduction theory by Ziman (1961, 1967) [4, 5] for liquid metals 

and its extended form by Faber-Ziman (1965) [6] for liquid metal binary alloys using 

pseudopotential concept have been found very successful in predicting the electrical resistivity of 

several liquid metals and alloys. The presence of conduction electrons and their interaction with the 

background of positive ions is treated through the Harrison’s First principle (HFP) pseudopotential 

technique which is a branch of orthogonalized plane wave formalism first proposed by Herring 

(1940) [7] and later developed by Philips and Kleinmann (1959) [8] and others. In the present 

paper, we have theoretically dealt with the structure, electrical resistivity, Knight shift, Fermi 

energy and electronic density of states of liquid binary Cd-Zn alloy. The structure factor S(k) 

needed for the present computation has been obtained through the hard sphere model via Percus-

Yevik (PY) approximation along the lines of Ashcroft & Langreth [9] and Enderby & North [10]. 

The form factor w(k,q) of the constituent metals has been derived through the well-known 

Harrison’s First Principle (HFP) pseudopotential technique. From these two ingredients the 

properties under investigation have been computed. In the HFP pseudopotential technique, the 
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various interacting potentials are arrived at through fundamental considerations employing quantum 

mechanical and statistical mechanical approaches along with Poisson’s equation. Although the 

technique was much rigorous than the model potential technique and also free from arbitrariness in 

choosing a model or its parameter, it lagged behind due to some cumbersome calculations involved. 

However, this was employed by King and Cutler [11] and Hafner [12] along with their co-workers. 

The HFP technique has been claimed to be superior to the model potential techniques as no 

arbitrary adjustable parameter is introduced and no arbitrary model is proposed. Further it has input 

requirements and is based on sound theoretical background (Harrison, 1966 [13]). 

In spite of various favorable points regarding HFP technique the workers found that there are 

several considerations to be kept in mind while choosing the input parameters, the most significant 

among them was the energetic problem. In computation of the form factor the important input 

parameters are the eigenfunctions and eigenvalues of the core electrons represented by Pnl(r) and εnl, 

n and l being the quantum numbers of the core states. The basic characteristics of the 

pseudopotential technique which distinguishes it from the band structure calculations is the use of 

the first order perturbation theory and the factorization of crystal matrix elements into the form 

factor w(k,q) and the static structure factor S(k). Both these ingredients are involved in all the 

physical properties studied in this project.  

Usually, the researchers in this field obtained these input parameters from Herman-Skillman 

[14] or generated with some improvement in his program while some authors preferred to use the 

experimental eigenvalues. Clementi [15] also published his atomic structure calculations in which 

he provided the eigenfunctions and eigenvalues of elements of one-third of the periodic table.  

In the present work, the HFP pseudopotential technique has been applied to evaluate the hard 

sphere diameters as a function of composition by minimizing the interionic pair potential for liquid 

binary alloys for the use in the determination of their partial structure factors. Then, in order to 

determine the physical aspects and explanation of the concentration dependence of the observed 

electrical resistivity in the liquid binary alloys of simple metals and other physical properties of the 

alloy considered for the study, we have also performed the first-principles calculation of the 

electronic band structure of Cd-Zn alloy employing the full-potential linearized augmented plane 

wave (FLAPW) method. Total energy minimization enables us to estimate the equilibrium volume, 

bulk modulus and its pressure derivative. This enables us to calculate the total density of states 

(DOS) and the partial DOS (PDOS) around the Fermi energy. 
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2. Formalism 

2.1. Form Factor 

The potential-dependent term is called the form factor kqkqk ww +=),( . It is the Fourier 

transform of the crystal potential in the reciprocal lattice. The non-local screened form factor may 

be expressed as 

 ( ) ( )
( )

( )

, 1
, ,

a b c d
q q q f R

q

v v v G q
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q q∗ ∗
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where ,a b
qv , 

c
qv , 

d
qv , 

f
qv , WR, ε*(q) and G(q) are the valence charge and core electron potential, 

conduction band-core exchange potential, conduction electron potential, screening potential, 

repulsive potential, the dielectric screening function and the exchange-correlation function 

respectively. 

 

2.2. Structure Factor 

The computation of partial structure factors through the formalism given by Ashcroft and 

Langreth [9] requires the hard sphere diameters σ1, σ2 of the first and second components of the 

alloy and packing density η which is related to σ1 and σ2 as given by 
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In the present work σ1 and σ2 have been evaluated by using the relation of Ashcroft and Langreth, 

1967 [16]  

 ( ) min
3 ,
2ip i BV V k Tσ = +  (3) 

where TkB2
3  is the mean kinetic energy and Vmin the depth of the first minimum in the interionic 

pair potential given by Harrison, 1966 [10] as 
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Here Fni(q) is the normalized energy-wavenumber characteristic and is given by 
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where Fi(q) in the local approximation is [13] 
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ε*(q) is the modified Hartree dielectric function given by 

 ( ) ( ){ } ( ){ }1 1 1q q G q∗ε = + ε − −  (7) 

with ε(q) as the usual Hartree dielectric function. G (q) takes into account the correlation among the 

conduction electrons.  

The three partial structure factors for a binary liquid mixture can be expressed in terms of the 

Fourier transform of direct correlation functions and are computed on the lines of Ashcroft and 

Langreth [9] and Enderby and North [10]: 

 ( ) ( ) ( )1 ,dS k n c q D qαα β ββ⎡ ⎤= −⎣ ⎦  (8) 

 ( ) ( ) ( )1 ,dS k n c q D qββ α αα= −⎡ ⎤⎣ ⎦  (9) 

 ( ) ( ) ( ) ( )
1

2 ,dS k n n c q D qαβ α β αβ=  (10) 

with 

 ( ) ( ) ( ) 21 1 .dD q n c q n c q n n cα αα β ββ α β αβ⎡ ⎤= − − −⎡ ⎤⎣ ⎦ ⎣ ⎦  (11) 

Sαα, Sββ and Sαβ are called the Ashcroft-Langreth partial structure factors. 

 

2.3. Electrical Resistivity 

For the computation of resistivity of liquid metals, Ziman gave the diffraction model formula 

(Ziman, 1961 [4]), which has been quite successful especially when applied to simple metals. The 

derivation of the Ziman formula relies on the use of the relaxation time approximation for the 

Boltzmann equation and the use of pseudopotential for the interaction between an electron and an 

ion.  

It was shown by Faber and Ziman (1965) [6] that the diffraction model formula for liquid 

metals proposed by Ziman (1961) [4] could easily be extended for binary alloys. For the sake of 

better representation, we express the resistivity of binary alloys as consisting of three distinct 

contributions, i.e. 

 ,R R R Rαα ββ αβ= + +  (12) 

where the first two terms on right hand side arise due to the same particle correlation and the third 

term (Rαβ) is due to the cross term scattering. α and β represent here the constituent species of the 

binary alloys. The different contributions are given by 

 ( )( ) ( ) ( )
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In a composite form R can be expressed as 
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where < > stands for 
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where w1(k,η) and w2(k,η) are the form factors of species 1 and 2 constituting the alloys; c1, c2 are 

the concentrations S11(k), S22(k) and S12(k) are the partial structure factors of the alloy, and η=q/2kF. 

 

2.4. Knight shift 

The frequency of nuclear magnetic resonance (NMR) associated with a metallic state is 

generally higher than the corresponding frequency for non–metallic state, such a shift of the NMR 

frequency is known as the Knight Shift. This arises due to the hyperfine contact interaction between 

the nucleus and the surrounding conduction electrons. The Knight shift (K%) is defined as the ratio 

of the frequency shift to the frequency at which the NMR is observed for the metallic state. The 

hyperfine interaction between conduction electrons and nuclear moment in metal provide a rich 

array of properties that can be studied through nuclear magnetic technique [Mahanti et al. (1970) 

[17], Knight (1956) [18] and Slater (1951) [19]]. Although the experimental techniques of 

measurement of the Knight shift have been developed much earlier, its theoretical development had 

been in a state of infancy and has been developed much later. The previous theoretical works 

(Ziman 1961 [4], Bradley et al. 1962 [20], Ziman 1964 [21], Muto et al. 1962 [22], Mishra and Roth 

1969 [23], Mishra et al. 1990 [24], Tripathi et al. 1989 [25]) on the magnetic properties of metal 

substantiate the view that like electrical resistivity, the nearly free electron approximation is also 

valid for the theoretical treatment of various magnetic properties viz., Knight shift, magnetic 

susceptibility, Hall coefficient, etc. We shall now present its concise theory within the framework of 

pseudopotential technique. The Knight shift vides Pake (1955) [26] may be written as 

 8 .
3 P FK Pπ⎛ ⎞= χ Ω⎜ ⎟

⎝ ⎠
 (18) 

Here χP is the spin paramagnetic susceptibility of conduction electron per unit volume, Ω is the 

volume of the crystal and PF the average electron density at the site of the nucleus from the 
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conduction electrons with an energy EF. Assuming the form factor w(k,q) and structure factor S(k) 

to be spherically symmetric, we get  

 ( ) ( )
1

1
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where 0
FP  and 1

FP  are the zero-order and first-order terms, K0 and K1 are zero order and first-order 

terms, EF is the Fermi energy, kF is the Fermi wave vector and the other symbols have their usual 

significance. For the alloys the integrand of Eq. (19) is replaced by the expression 
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Also Z, EF and kF are those of the alloys evaluated through X = c1X1 + c2X2 where c1 and c2 are the 

concentrations of the constituents, X, X1, X2 are the input parameters of the alloy viz., Z, EF, kF, Ω0 

etc. 

 

2.5. Fermi energy and Density of states 

The electronic structure of solids and liquids can be precisely described through an accurate 

knowledge of its electronic states. There are a number of theoretical methods of determining 

different aspects of electronic structure of liquid metals among which the density of states and the 

Fermi energy have significant bearing. The calculations of Fermi energy EF and the density of states 

N(EF) for simple liquid metals have been reported by Schneider and Stoll (1967) [27], Ashcroft 

(1968) [28], Shaw and Smith (1969) [29], Srivastava and Sharma (1969) [30], Jena and Halder 

(1971, 1972) [31, 32], Stoll et al. (1971) [33], Halder (1973) [34], Ichikewa (1973) [35], Dixit and 

Nigam (1973) [36], Srivastava (1974, 1975) [37, 38] and Kumar and Hemkar (1977) [39]. The 

study of density of states have been made by Watabe and Tanaka (1964) [40], Ballentine (1966) 

[41], Chan and Ballentine (1971, 1972) [42, 43], Itami and Shimoji (1972) [44], Ballentine and 

Chan (1973) [45] & Kuroha and Suziki (1974) [46] using various pseudopotential and the Green 

function theory. It does not appear that the Harrison’s first-principle pseudopotential has been used 

for the study of these properties except for Thakur (1980) [47] for alkali metals. We, therefore, 

present our work on the Fermi energy and density of states of multivalent liquid metals on the basis 

of the first-principle pseudopotential approach of Harrison. In the framework of conventional 

perturbation theory, the energy of liquid metal is expressed as (Harrison, 1966 [10]), 

 ( ) ( )
( )

2
2 2
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Here S(k) is the liquid structure factor and is non–zero for a liquid, kk w  are the matrix elements 

for the crystal potential (W), kqk wN +  are the unscreened form factor, m is the electronic 

mass and 2h= π , where h is the Planck constant. 

At the melting point, the above expression is reduced to (Schneider and Stoll, 1967 [27]) 
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( ) ( )2 22 2
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m q
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where w(k,q) = w(q). 

Replacing Σ by 30
38

d qΩ
π ∫  and putting k = kF, we obtain for the energy at the Fermi level, 

 ( ) ( ) ( ) ( )2 2 2 0 ,
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and 
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For the alloy the integrand of Eq. (24) is replaced by 
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and the integrand of Eq. (25) is replaced by 
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Here Ω0 is the atomic volume related to the Fermi wave vector kF and valence Z by relation 

 2 3
0 3 .FZ kΩ = π  (28) 

It has been assumed that S(k) and w(q) are isotropic. 

The expression for the density of states of liquid metal is given as 
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The first integrand of Eq. (29) is the same as IE and the second integrand for alloy becomes 
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Also Z, EF and kF are those of the alloys evaluated through X = c1X1 + c2X2 where c1 and c2 are the 

concentrations of the constituents, X are the input parameters of the alloy viz., Z, EF, kF, Ω0, etc. 

and X1, X2 are those of the constituents. 

 

3. Results and Discussion 

3.1 Structure 

The values of R0 that satisfy (3) have been taken as the hard sphere diameters. σ1 and σ2, as a 

function of composition, have been evaluated for the system. The partial structure factors have been 

computed using these hard sphere diameters through the expression given by Ashcroft and 

Langreth, 1967 [16].  

The partial structure factors of Cd-Zn at T = 450°C have been computed. The equiatomic 

structure factors have been graphically represented in Fig. 1. The characteristic nature of the partial 

structure factors has been reproduced. The principal peaks of S11(k) and S22(k) lie near k / kF = 1.8 

and that of S12(k) lies between them. Their principal peak heights are 1.906, 1.782 and 0.848, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Partial Structure Factors of Cd-Zn at equiatomic composition. 
 

The computed structure factors show the behavior of random mixing without a subpeak or 

asymmetry of the first peak. The position of the first principal peak of the partial structure factors 



Armenian Journal of Physics, 2010, vol. 3, issue 3 

211 

and the crossover point q0 of the form factor decides the range of η = q / kF which is most 

contributing to the resistivity integrands for the alloy. 

 

3.2 Electrical resistivity 

For the study of the electrical resistivity of liquid alloys we need for the partial structure 

factors at the melting temperature for different concentrations. Since the experimental knowledge 

on partial structure factors is limited to a few systems only at the equiatomic composition, we 

undertake a theoretical approach based on Percus-Yevik (PY) approximation on the lines of 

Ashcroft and Langreth (1967) [9] and Enderby & North (1968) [10]. Their natures have been shown 

in Fig. 1 for the alloy Cd-Zn at the equiatomic composition. 

The form factors required for this computation were computed from Eq. (1). But it was found 

that some form factors, which reproduced good electrical resistivity with the experimental structure 

factors in case of metals, did not perform well in alloys. However, slight change in the choice of 

input parameters, e.g., β or exchange correlation function improved the agreement in case of Cd-Zn. 

For Zn the form factor evaluated through eigenvalues of Clementi with α = αvt. and β = 5/8 using 

V-S exchange correlation gave satisfactory agreement in case of Cd-Zn whereas that with HS 

eigenvalues α = 2/3, β = 5/8 and Shaw form of exchange reproduced the resistivity of pure Zn more 

satisfactorily.  

For Cd-Zn the form factor of Cd component is that evaluated through the Hubbard–Sham 

form of exchange, the other inputs being the same as the previous computations. However, for Zinc 

the form factor has been evaluated with C eigenvalues along with α = αvt., β = 5/8 and V-S form of 

exchange correlation to yield the better agreement of the calculated values with the experimental 

resistivity of the alloy. The experimental data have been read from graph of [48].    

The good agreement may be indicative of the free electron behavior of these alloys. The slight 

discrepancies wherever they occur may be attributed to the failure of approximations involved in 

the theoretical framework or to the formation of chemical complexes, which is quasistable in nature. 

For further improvement the complex formation model proposed by Bhatia and Thornton may be 

used. The resistivity in Cd-Zn varies almost linearly with concentration (Fig. 2). Since, in this case 

Zm = 2 (i.e., ββαα ZcZcZ m += ) so this system may have either negative or positive (weakly 

temperature dependent) one coefficient of resistance. Also, this is supported by the fact that this 

alloy is regarded as being a quasi-single component system, i.e., a negative temperature coefficient 

is expected when 2kF is close to the position of main peak in the structure factor (or 2≈mZ ) and 

that is what we have observed in this case.  
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Fig. 2. Concentration dependence of electrical resistivity of Cd-Zn. 
 

3.3 Physical Properties 

The computed form factors, which have been found suitable for the evaluation of electrical 

resistivities of the alloys under investigation, have been further put to test through the computation 

of the Knight shift (K%), its concentration dependence and the Fermi energy (EF) in eV along with 

the electronic density of states for the alloys under investigation. It is to be mentioned that the 

integrand of the Knight shift involves within itself the form factor w(k,q) linearly. Hence the 

computed Knight shift may be taken as a test for the accuracy of the form factor both in respect of 

magnitude and sign. Other physical quantities like electrical resistivity, Fermi energy and density of 

states have their integrands involving the square of the form factor and thus they are only concerned 

with the magnitude of the form factor. At the equiatomic composition, the Knight shifts are in fairly 

good agreement with their ideal values obtained through experimental data viz., for Cd-Zn (K%)th. 

= 0.716, (K%)id = 0.566. 

The study of computed results reveals that for Cd-Zn ( )th
% 0.716K =  against 

( )A
% 0.795,K =  ( )B

% 0.337K =  and ( )id% 0.586.K =  The Fermi energy ( )th
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A
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B
0.319FN E =  and ( )id0 0.36FN E =  eV−1. The K0 

value of the constituent metals is that evaluated through zero-order OPW method (Faber, 1972 [49]; 

Shimoji, 1977 [50]).  
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Such calculations are very sensitive to the structure factors and the pseudopotential form 

factor. Thus the results are not always in quantitative agreement with experiment (Shimoji, 1977 

[50]). 

Also it should be mentioned that the integrand of electrical resistivity involves the square of 

the form factors. This is also true for the integrands of Fermi energy and density of states. However, 

the integrand of the Knight shift involves the form factor linearly. Hence, the sign of the form factor 

is quite material in the computation of Knight Shift. Thus a form factor reproducing good electrical 

resistivity may not reproduce the Knight shift so nicely. 

In spite of the above mentioned facts and the inherent approximations of the HFP technique, 

Ziman formalism, Knight formalism and Fermi energy formalisms, a fairly reasonable agreement 

has been obtained in the present work. 

 

3.4 Electronic Structure Calculation 

The ab-initio electronic structure calculation of Cd-Zn alloy has been performed using 

FLAPW method within the generalized gradient approximation (GGA) [51]. In our calculation, the 

crystal structure of Cd-Zn has the space group symmetry Pm-3m with Cd at (0, 0, 0) and Zn at (0.5, 

0.5, 0.5) in the unit cell. The radii of the muffin tin spheres were 2.0 a.u. each for Cd and Zn, 

respectively. The total energy with respect to the volume has been calculated and minimized as 

shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Total energy of Cd-Zn as a function of cell volume. 

 

The Birch-Murnaghan relation for equation of state (EOS) is used to get the static equilibrium 

volume V0 (=274.08) as well as the bulk modulus B0 (= 29.05 GPa) and its pressure derivative B′ (= 
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3.834) at zero pressure. The pressure derivative of bulk modulus at zero pressure B0′ is a parameter 

of great physical significance in high pressure physics. It is related to a few other important 

thermophysical properties (like phase transitions, interphase energy, adsorption energy etc.) [52].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The electronic band structure of Cd-Zn along high symmetry directions. 
 

The calculated band structure for Cd-Zn in the high symmetry direction in the Brillouin zone 

is shown in Fig. 4. In this figure we find a large dispersion of the bands.  

The angular momentum projected densities of states were obtained by using 1000-k points 

inside the irreducible Brillouin zone for integration. The full geometrical optimization gives an in-

plane lattice constant a = b = c = 3.74 and c/a = 1.0 of pure Cd-Zn alloy.  

Fig. 5 shows the total DOS along with partial DOS of Cd-d and Zn-s states of Cd-Zn alloy. It 

is observed that the main contribution in the valence band comes from Cd-d state near the Fermi 

level. The density of state of Cd-d shows a sharp peak near the edge of the Brillouin zone after 

which it shows a rapid decline in the density of states. It can be interpreted as when the Fermi 

surface get contacted with the Jones zone planes, electrons would fill the corners of the Jones zone 

thereby resulting in a rapid decline in the density of states. The formation of the peak signifies the 

overlap of electrons across the {100} zone planes coupled with contact with the {101} zone planes 

in the hcp Brillouin zone. The narrow 3d band of Zn-metal can be ignored as it is positioned 

slightly below the bottom of the valence band and is scarcely hybridized with the valence electrons.  
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Fig. 5. Total DOS and PDOS around Fermi energy of Cd-Zn alloy calculated for the optimized lattice constant. 

 

4. Conclusion 

1. The Harrison’s First Principle technique in conjunction with the hard sphere technique of 

Ashcroft and Langreth can be safely used for the study of transport property (viz., electrical 

resistivity) of Cd-Zn alloy.  

2. The partial structure factors play a key role in binary alloys due to the randomness of 

various scattering centers A, B and AB where A and B are the species.  

3. The accuracy of resistivity values are sensitive to the accuracy of structure factor S(k) and 

form factor kwqk + . The resistivity in Cd-Zn varies almost linearly with the Zn 

concentration. The resistivity curve shows a negative temperature coefficient of resistance. 

Hence, this alloy is regarded as being a quasi-single component system.  

4. The sharp peaks in liquid alloys result from the formation of compounds or complexes. This 

is certainly suggestive for describing energetically favorable configuration of ions in liquid 

alloys.   

5. The electronic band structure calculation of Cd-Zn has been performed using FLAPW 

method. The equilibrium volume, bulk modulus, and its pressure derivative have been 

estimated through energy minimization of the alloy.  

6. The main contribution in the valence band comes from Cd-d and Zn-s states.  
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