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Abstract: A generalized transfer matrix method for a problem of electromagnetic wave propagation through an 
arbitrary one-dimensional absorbing medium is suggested. Connections between the scattering amplitudes of the left 
and right scattering problems are found. It is shown that the problem of scattering amplitude determination can be 
reduced to solution of a one set of differential equations with two different initial conditions.     

 
1. Introduction 

Photonic crystals represent a new kind of optical materials, which possess many interesting 

properties and render many novel applications as well [1–6]. The existence of photonic band gaps in 

photonic crystals, owing to multiple Bragg scatterings, leads to many interesting phenomena [1–9].  

Most photonic crystals fabricated so far are made from two dielectric materials. Usually, photonic 

band gaps of dielectric photonic crystals are not large. Combinations of metallic and dielectric 

materials may lead to more interesting properties comparing with dielectric photonic crystals. The 

introduction of metal sheets into dielectric photonic crystal can increase photonic band gaps 

considerably [10-14]. For example, the absorption of the bulk metal can be enhanced by inserting a 

dielectric layer periodically to form one-dimensional metallic-dielectric photonic crystals. By a 

proper choice of the structural and material parameters, one can obtain a large absorption 

enhancement in the visible and infrared regions [15]. 

Despite the fact that an investigation of one-dimensional periodic structures from absorbing 

layers was a subject of interest for many authors and has a great interest for many years, until now 

an analytical solution of this problem is unknown.  The problem is that the operator of a field wave 

is not Hermitian, so that the flux of electromagnetic wave energy does not converse.  In the standard 

method of transfer matrix [16], the complex transmission and reflection amplitudes are derived 

from the elements of the transfer matrix; however, the inverse connection between complex 

characteristics of a scattering and transfer matrix elements is not established. We consider the 

mention point as a main deficiency of the standard transfer matrix method, not only for that, it does 

not allow exploring important details of the absorption–scattering process. It is important to note 

that for a multilayer system all calculations have to be performed by numerical methods only. 

In this work, we find connections between elements of transfer matrix in the case when 

absorption present. These connections allow presenting the elements of transfer matrix with help of 

complex parameters of scattering problem and get some analytical results for absorbing photonic 

crystals. 
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2. The wave field as a sum of modulated plane waves 

Bellow we consider the propagation of a harmonic in time electromagnetic wave in a one-

dimensional absorbing media. It is known that the electric component of the field is described by 

the following equation: 

 ( )
2

2
2 ( ) 0d E k u x E

dx
+ − = , (1) 

where  

 1 2( ) ( ) ( )u x V x iV x= + , 2 2 2/k c= ω , ( )2
1 1 ( )V k x′= − ε , 2

2 ( )V k x′′= − ε   

and ( )x′ε , ( )x′′ε  are real and imagine parts of dielectric constant.  

We introduce the functions ( )a x  and ( )b x  in accordance with the following formulas: 
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It is easy to see that the  
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To present dxxd /)(Ψ  with help of the functions )(xa  and ( ),b x  we consider the first-order 

derivatives of expressions (2), (3). From (2), (3) one can write down  
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By using Eq. (1) the last two equations can be written in the form 
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As it follows from (7), (8) and (4), the functions )(xa  and )(xb  satisfy the following set of 

equations: 
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From Eqs. (7), (8) it follows that 
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Taking into account Eq. (11), it is easy to get 

 ( )}exp{)(}exp{)()( ikxxbikxxaik
dx

xdE
−−= . (12) 

Note that the obtained form of dxxdE /)(  is similar to a wave derivative getting for the case 

of constant dielectric constant. This similarity has a physical meaning, in particular, the functions 

)(xa  and )(xb  if they satisfy the set of equations (7), (8), should be considered as amplitudes of 

secondary waves propagating in opposite directions. 

 

3. The transfer matrix method for an arbitrary absorbing slab 

Now we discuss the problem of wave transmission through an irregularly absorbing slab 

when the dielectric constant has the form 

 
1
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2
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( ) ( ), ,

1, .

x x
x i x x x x

x x

<⎧
⎪ ′ ′′ε + ε < <⎨
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 (13) 

In accordance with the above-mentioned result, let us consider two linear independent solutions 

of Eq. (1) )(1 xE  and )(2 xE  as a sum of modulated plane waves propagating in opposite directions:   

 }exp{)(}exp{)()(1 ikxxbikxxaxE −+= ,  (14) 

 }exp{)(}exp{)()(2 ikxxdikxxcxE −+= . (15) 

Their derivatives have the form  

 ( )}exp{)(}exp{)()(1 ikxxbikxxaik
dx

xdE
−−= ,  (16) 

 ( )}exp{)(}exp{)(
)(2 ikxxdikxxcik

dx
xdE
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Note that for the case of a non-absorbing slab ( ( ) 0x′′ε = ) the second solution )(2 xE  can be taken 

as a complex conjugate of the solution )(1 xE , i.e. 

 )()( * xaxd = , )()( * xbxc = .   (18) 

It is easy to check that for two arbitrary independent solutions of Eq. (1) the following 

conservation law takes place: 

 const
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xE
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xE =− 1
2

2
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which by using Eqs. (14)–(17) can be written as 

 constxcxbxdxa =− )()()()( .                                     (20) 
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The asymptotic behaviors of the fields )(1 xE  and )(2 xE  in the region outside the slab can be 

presented in the form: 

 
⎩
⎨
⎧

>−+
<−+

=
,},exp{}exp{
,},exp{}exp{

)(
222

111
1 xxikxbikxa

xxikxbikxa
xE        (21) 

 
⎩
⎨
⎧

>−+
<−+

=
,},exp{}exp{
,},exp{}exp{

)(
222

111
2 xxikxdikxc

xxikxdikxc
xE               (22) 

where 1a , 1b , 1c , 1d  and 2a , 2b , 2c , 2d  are the values of the functions )(xa , )(xb , )(xc , )(xd  in 

the points 1xx =  and 2xx = , correspondingly. By using (14)-(17) it is easy to see that the 

continuity of the functions )(1 xE , )(2 xE  and their derivatives at the slab boundaries takes place: 
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Any solution )(xE of Eq. (1) having the asymptotic behavior of the form    
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can be presented as a linear combination of the functions )(1 xE , )(2 xE : 

 )()()( 2211 xEvxEvxE += .                                           (28) 

Taking into account Eqs. (14)-(17) and (27), (28), from the standard conditions of wave 

continuity at the slab boundaries 1x , 2x one can write down 

 12111 dvavA += , 12111 cvbvB += ,                                            (29) 

 22212 dvavA += , 22212 cvbvB += .                                         (30) 

From Eqs. (29), (30) one can obtain that the linearity between the coefficients 2A , 2B  and 1A , 

1B  is presented with help of the following transfer matrix:  
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It is easy to check that 
 1αδ− γβ = .                                                           (39) 

Note that the obtained transfer matrix (31) provides the transition between the coefficients of 

the solutions )(1 xE , )(2 xE  as well: 
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4. The transfer matrix elements and scattering amplitudes of left and right scattering 

problems 

Now we consider the wave field for two cases, which describe the waves falled on a slab from 

the left and right sides, correspondingly:  

 1

2
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where rt,  and ps,  are transmission, reflection coefficients of left ant right scattering problems. 

Comparing expressions (42), (43) with (21), (22) we have 

 11 =a , rb =1 , ta =2 , 02 =b ,                            (39) 

 01 =c , sd =1 , pc =2 , 12 =d .                              (40) 

Using (39), (40) from (32)-(35) we get the elements of the transfer matrix presented with help 

of the scattering amplitudes of left and right scattering problems: 

 st pr
s
−

α = , p
s

β = , r
s

γ = − , 1
s

δ = .                                    (41) 

Substituting (41) into (34) we find 

 ts = ,                                                (42) 

which means that the transmission amplitudes of left and right scattering problems are equal.  

To derive a relation between reflection amplitudes of left and right scattering problems it is 

necessary to note that if the solution of the wave equation has the form 
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when another independent solution can be taken as 

  }exp{)(}exp{)()(2 ikxxaikxxbxE kk −+= −− .                               (44) 

Indeed, substitution of k  for k−  into the set (7), (8) reduces the both equations to each other. Note, 

that in the case of nonabsorbing media the following relations exist 
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From (46), (47) and (32)-(35) for the transfer matrix T̂  (31) one can write down 
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and 

 ( ) ( ) ( ) ( )k k k ka x a x b x b x const− −− = .                                      (49) 

From (48) and (31) it is easy to see that  

 ( ) ( )k kα = δ − , ( ) ( )k kβ = γ − ,                                  (50) 

and for a nonabsorbing media (see  Eq. (45)) 

 *( ) ( )k kα = δ , *( ) ( )k kβ = γ .                                   (51) 

If we choose 1)( 1 =xak  and 0)( 2 =xbk , when in accordance with (39) )()( 1 krxbk = , 

2( ) ( ),ka x t k=  the transfer matrix elements can be presented with help of scattering amplitudes of 

the left scattering problem:   
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In the case of the choice 0)( 1 =xbk , 1)( 2 =− xa k  in accordance with (40) the scattering amplitudes 

of right scattering problem will be )()( 1 ksxa k =− , )()( 2 kpxb k =−  and for transfer matrix elements 

we can write  
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Comparing (52) and (54) we get 
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 As it follows from (41), (42) and (52)-(55), the following connections also take place: 
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From the last two equations we obtain 

 )()()()( krkrkpkp −=− ,                             (60) 

which shows that connections between the reflection amplitudes of left and right scattering 

problems have more complicated form than connection existed between transmission coefficients 

(see (42)).  

 

5. The scattering amplitudes as functions of a slab border point 

Let us consider the transfer matrix elements as functions of the slab border points 1x , 2x , i.e. 

we introduce the functions ),,( 21 kxxαα = , ),,( 21 kxxββ = , ),,( 21 kxxγγ =  and ),,( 21 kxxδδ =  

(see (31))  It is easy to see from (48), that when 21 xx =  then 

 1 1 1 1( , , ) ( , , ) 1x x k x x kα = δ = ,                                            (61) 

 1 1 1 1( , , ) ( , , ) 0x x k x x kβ = γ = .                                             (62) 

From (9), (10) it follows that the functions )(xak , )(xbk  and )(xa k− , )(xb k−  satisfy the same 

set of equations: 
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If we consider 1x  as a constant and 2x  as a variable, then denoting xx =2  ( ),,()( 21 kxxx αα = , 

1 2( ) ( , , )x x x kβ = β , 1 2( ) ( , , )x x x kγ = γ  and 1 2( ) ( , , )x x x kδ = δ ) one can write down a problem of 

determination of scattering amplitudes as a Cauchy-type problem for a set of linear differential 

equations: 
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with initial conditions 

 1( ) 1xα = , 0)(/)( 11 =xtxr ,                                       (69) 

and  

 1 ( ) 1 ( ) ( ) exp{ 2 }
( ) 2 ( ) 2

d iV x iV x x i kx
dx t x k t x k
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 ( ) ( ) ( ) 1( ) exp{ 2 }
2 2 ( )

d x iV x iV xx i kx
dx k k t x
β
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with initial conditions 

 1)(/1 1 =xt , 1( ) 0xβ =  .                                                  (72) 

As it is seen from (67)-(72), the pairs of quantities )(xα , )(/)( xtxr  and )(xβ , )(/1 xt  satisfy 

the same set of differential equations, but with different initial conditions.  

 

5. Conclusion 

In this paper, for the problem of electromagnetic wave propagation through an arbitrary one-

dimensional absorbing media a generalized transfer matrix method is suggested. The developed 

theory allows to present transfer matrix elements with help of the scattering amplitudes of the left 

and right scattering problems. It is shown that for an arbitrary absorbing slab the left and right 

scattering amplitudes coincide with each other. In the framework of the developed method the 

scattering problem was formulated as a Cauchy type problem. 
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