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Abstract: The excitation of the plasma wake waves by an electron bunch in the presence of an intense electromagnetic 
radiation with circular polarization has been studied in parametric unstable regimes. In the unperturbed state (in the 
absence of an electron bunch), the interaction between a pump wave and a plasma is described by the Maxwell’s 
equations and the nonlinear relativistic hydrodynamic equations for a cold plasma. The excitation of linear waves by an 
electron bunch is investigated against a cold plasma background. It is shown that, in a certain range of the parameters of 
the bunch, pump wave, and plasma, the excitation is resonant in character and the amplitude of the excited plasma wake 
waves increases with distance from the electron bunch. 
 
Keywords: Plasma accelerators, parametric excitations, electron beam, intense radiation 
 
1. Introduction 

Plasma-based methods of charged particle acceleration, which have been actively developed 

over the past two decades, occupy an important place among novel acceleration schemes (see, e.g., 

[1, 2] and the references therein). The excitation of wake waves by charged–particle bunches is one 

of the ways of generating strong (up to E ∼ 1 GeV/m) electromagnetic fields in plasmas. The 

induced wake fields can serve not only to accelerate charged particles but also to focus electron 

(positron) bunches [3] with the aim of generating high density beams and ensuring high luminosity 

in the next generation of linear colliders. 

Many papers have been devoted to the linear theory of one–dimensional wake waves [3-10]. 

The nonlinear theory of these waves was developed in [11-18]. 

This work is a continuation of [19], which was aimed at studying the effect of a circularly 

polarized electromagnetic wave of arbitrary intensity 0 0A eE mc= ω  (where E0 and ω0 are the 

amplitude and frequency of the electromagnetic field) on the excitation of electromagnetic wake 

waves by a one-dimensional relativistic electron bunch in a cold plasma, in which case the electron 

oscillatory velocity in the pump field can be close to the speed of light. It was shown that there are 

three ranges of parameter values of the pump wave, electron bunch, and plasma in which the linear 

equations for the induced longitudinal and transverse fields have three different solutions. The 

induced fields were studied only in the parameter range where the plasma is stable against the 

parametric instability, which was thoroughly analyzed in [20-23]. In this case, the induced fields 

were found to be a superposition of two harmonic oscillations with different amplitudes and 

frequencies [19]. 
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The objective of the present paper is to investigate the role played by a strong electromagnetic 

wave with circular polarization in the excitation of one-dimensional linear wake fields in the 

parameter range in which the plasma is unstable against the parametric instability. As in [19], the 

pump wave – plasma interaction in the absence of a bunch is described by Maxwell’s equations and 

nonlinear hydrodynamic equations in the cold plasma approximation. In this case, the plasma can 

be in a spatially homogeneous state [18-20]. Then, perturbation theory is applied to derive and 

analyze the expressions for the induced fields under the assumption that a one-dimensional bunch 

propagating in the plasma perturbs this state only slightly. 

 

2. Basic Equations 

Assuming that the oscillatory velocity of the plasma electrons in an external field is much 

higher than the electron thermal velocity and the pump frequency ω0 is far above the electron-ion 

collision frequency, we start with the following basic set of equations, which includes Maxwell’s 

equations and the relativistic hydrodynamic equation of motion for cold electron plasma: 

 ( )1 4 4 ,b
e en n

c t c c
∂ π π

× = − − ξ
∂
EB v u∇  (1) 

 1 ,
c t
∂

× = −
∂
BE∇    0⋅ =B∇  (2) 

 ( ) ( )04 4 be n n en⋅ = − π − − π ξE∇  (3) 

 ( ) ( )
2

2 2

11 ,e v
t m c c c

∂ ⎡ ⎤+ ⋅ = − − + × − ⋅⎢ ⎥∂ ⎣ ⎦
v vv v E v B v E∇  (4) 

 ( ) 0,n n
t

∂
+ ⋅ =

∂
v∇  (5) 

where ,z utξ = −  n0 is the unperturbed electron plasma density, and ( )bn ξ  is the density of a given 

one-dimensional bunch propagating with the velocity u (such that u = uez, 1z =e ) in a plasma. 

Since we are interested in relativistic bunches, we neglect oscillations of the bunch electrons in an 

external electromagnetic pump wave. 

In the field of a circularly polarized electromagnetic wave propagating along the z-axis, the 

plasma can be in a spatially homogeneous state, in which the electromagnetic field and electron 

velocity are given by the expressions [18-20] 

 ( )0 0 cos sin ,x yE= ψ + ψE e e    0 0,zE =  (6) 

 ( )0
0 0

0

sin cos ,x y
k c E= − ψ + ψ
ω

B e e    0 0,zB =  (7) 

 ( )sin cos ,e e x yc= β − ψ + ψv e e    0,ezv =  (8) 
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where 0 0 ,t k zψ = ω −  ( ) ( )0 0 0 ,k c= ω ε ω  ( ) 2 21 ,Lε ω = −ω ω  2 2 21 ,L p eω = ω −β  ,e ev cβ =  

 
2

,
1

e
Av c

A
=

+
 (9) 

0 0 ,A eE mc= ω  2 2
04p n e mω = π  is the square of the plasma frequency, and c is the speed of light in 

vacuum. 

We consider small perturbations which are driven in a plasma by an electron bunch with 

density nb such that 0.bn n�  We represent all of the quantities in the form 0 ',f f f= +  where f0 

stands for the unperturbed quantities in expressions (6)-(9), and switch from the x- and 

y-components of the fields and electron plasma velocities to the new variables 

 
( )
( )
( )

' '

' ' .
x y

x y

x y

i

E E iE
B B iB e
w v iv

± ±

± ψ± ±

± ±

⎛ ⎞± ξ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ = ± = ξ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟+ ξ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (10) 

In other words, we perform the transformation to the rotating frame associated with the pump wave. 

In [19] linearizing Eqs. (1)-(5) and performing the transformations (10) we obtained the 

following expressions for the components of the induced electromagnetic fields: 

 
( )
( ) ( ) ( )

( )
' '

' ' .
'

zz
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GE
d n

G
∞

−∞
⊥

+

⎛ ⎞ ξ − ξ⎛ ⎞ξ
= ξ ξ⎜ ⎟ ⎜ ⎟⎜ ⎟ ξ − ξξ ⎝ ⎠⎝ ⎠
∫  (11) 

Here, Gz and G⊥  are the Green’s functions for the quantities '
zE  and +, respectively, 

 ( ) ( )
( )

1 ,
2 ,

,
iks

z

D kdkG s ie e
k D k
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ω
= −

ω∫  (12) 

 ( ) ( ) ( )
( )

2
1

0

,2 ,
,

ikse L R keG s dk ku e
c D k

∞ −
⊥ −∞

ωβ ω
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ω∫  (13) 

where ω = ku. According to Eq. (2), the induced magnetic field is related to the transverse electric 

field as 

 ( ) ( ) ( ) ( )0 0
0 'exp ' ' ,c i k d i

u u u
ξ± ± ±

−∞

⎧ ω ω ⎫⎛ ⎞ ⎡ ⎤ξ = ± ξ + − ξ ξ − ξ ξ⎨ ⎬⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎩ ⎭
∫  (14) 

 ' 0.zB =   

where we have introduced the notations 

 ( ) ( ) ( ) ( )
2

2 0
1 0 02, ,R k k k

c±

ω±ω
ω = ± − ε ω±ω  (15) 

 ( ) ( ) ( ) ( ) ( )
2 2 2
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2
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1 1 1 12, , , , , .

2
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c− −

⎛ ⎞β ω ω
ω = ω ε ω ω ω + − ε ω ω + ω⎡ ⎤⎜ ⎟ ⎣ ⎦

⎝ ⎠
 (17) 

The transverse components of the induced electric and magnetic fields can be found from 

expression (10) by taking either a real or an imaginary part of the complex quantities + and +. As 

a result, we obtain 

 ( ) ( ) ( )' , cos sin ,x r iE z t E E= ξ ψ − ξ ψ    ( ) ( ) ( )' , sin cos ,y r iE z t E E= ξ ψ + ξ ψ  (18) 

where 

 ( ) ( )Re ,rE ξ = ξ⎡ ⎤⎣ ⎦    ( ) ( )Im .iE ξ = ξ⎡ ⎤⎣ ⎦  (19) 

Hence, expression (18) for the transverse components of the induced fields describes modulational 

perturbations in the plasma. Note that, in the absence of a pump wave (βe = 0), the transverse 

components of the perturbed quantities vanish and expressions (11) and (12) coincide with the 

familiar expressions for one-dimensional linear fields. 

Now, we proceed to the calculation of the Green’s functions defined by Eqs. (12) and (13). In 

these expressions the poles of the integrals are the roots of the dispersion relation D(k, ω) = 0. In the 

general case (i.e., when the Cherenkov resonance condition ω = ku is not imposed), this dispersion 

relation was investigated in detail by Kalmykov and Kotsarenko [20]. In the absence of a pump 

wave (βe = 0), Eq. (17) yields conventional dispersion relations for plasma waves, ω = ωp, and for 

transverse (electromagnetic) waves, 2 2 2 2.p k cω = ω +  The presence of a pump wave (βe ≠ 0) gives 

rise to the coupled waves in a plasma. If the pump wave is sufficiently weak ( 1eβ � ), then the 

growth rate of the coupled waves increases linearly with βe. Consequently, the coupled waves are 

parametrically unstable down to βe = 0. 

Under the Cherenkov resonance condition ω = ku, Eq. (17) gives the dispersion relation 

 
2 2 22 2

2 2 4 2 20
02 2 24 0,e LL Lk k k k

u c u c
⎡ ⎤⎛ ⎞ ⎛ ⎞ω β ωω ω⎛ ⎞− − γ −β + + γ =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (20) 

where β = u/c and γ−2  = 1 − β2. 

We introduce the dimensionless wave vector χ, which is related to k by k = (ωL /u)χ, in order 

to represent the 

 
2 4

2 2 4 2 2 4 2 2 2 2 2
4 4 4

1 1 12 2 4 ,
2 2

aF F F
a a a±

⎛ ⎞−⎛ ⎞χ = + β γ ± + β γ −β γ + γ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (21) 

where 

 2 2 1 ,F a= Δ − −βαΔ  (22) 
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,pΔ = ω ω  and 2 21 .a A= +  The character of the solutions of Eq. (20) (and, accordingly, the 

nature of the induced fields and electron plasma velocities) is governed by the sign of the 

expression under the square root in Eq. (21). We denote the regions where this expression is 

positive and negative by I and III, respectively. The boundary between these regions (at which this 

expression vanishes) is denoted by II. We equate the expression at hand to zero to obtain the 

following expression for ∆ at boundary II: 

 ( ) ( )2 21 ,F F
a

μ
± μ μ

γ
Δ = + γ ±βγ  (23) 

where the index µ indicates a plus or minus sign and 

 
( )

1 2
4 4

2 2

2 1 2 1 1
.

4 1
a a

F±

⎡ ⎤− ± γ −
⎢ ⎥=

γ γ −⎢ ⎥⎣ ⎦
 (24) 

With µ = + and µ = −, expression (23) is valid for a > 1 and 1 < a < a0(γ), respectively, where 

 ( )
1 4

2

0 2

1 1 1
.

2 1 1
a

⎛ ⎞+ − γ
⎜ ⎟γ =
⎜ ⎟− γ⎝ ⎠

 (25) 

Equations (23)-(25) were obtained under the assumption 1 1.45,γ > γ �  where γ1 is the real positive 

root of the equation 2γ2(γ2 − 2) = γ − 1, satisfying the condition γ > 1. For a small-amplitude pump 

wave ( 1 1a − � ), the function ( )+
+Δ  coincides with ( )−

+Δ  and the function ( )+
−Δ  coincides with ( ) .−

−Δ  

The expressions for these functions, which will be denoted by 0 ,±Δ  can be obtained from Eqs. (23) 

and (24):  

 ( ) ( )
(0)

2

1 11 .
24 1±Δ γ = γ + ±

γ −
 (26) 

Additionally, for a = a0(γ), the function ( )−
+Δ  coincides with ( ) .−

−Δ  For this function, which will be 

denoted by ∆0(γ), Eqs. (23) and (24) give 

 ( ) ( )

1 4
2

0 2
0

2 1 1
.

1 1 1a

⎛ ⎞− γγ ⎜ ⎟Δ γ = = γ
⎜ ⎟γ + − γ⎝ ⎠

 (27) 

From the above expressions we can see that the boundary II is composed from the four curves ( )+
±Δ  

and ( ) ,−
±Δ  which envelop a closed region (the curves ( )+

+Δ  and ( )+
−Δ  close upon themselves at 

infinity). We denote the curves ( ) ,+
−Δ  ( ) ,−

−Δ  ( ) ,−
+Δ  and ( )+

+Δ  by a', b', c', and d', respectively. In the 

case of relativistic bunches, two of the curves, c' and b', lie in the very narrow region 

( ) 2
01 1 1 16 .a a< < γ + γ�  The pump wave amplitude is maximum at a = a0(γ) and Δ = Δ0(γ): 
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 ( )
( ) ( )0max 1 4 3 4

2 2
,

2 1 1 1 1 1

pE
E γ =

− γ + − γ
 (28) 

where Ep = mcωp /e. For relativistic bunches, we have ( ) ( )( )2
0max 2 1 5 16 .pE Eγ + γ�  

Figure 1 shows regions I and III and boundary II between them for γ =  10 and 100.  The curves 

close upon themselves at infinity (i.e., for E0 → ∞). Figure 1 also shows a part of the dependence of 

∆ on E0 at boundary II (curves a', b', c', and d') for γ = 100 and for a small-amplitude pump wave 

such that 0 0max0 2.pE E E≤ ≤ �  For electromagnetic pump waves with intensities 1610LI ≤  

W/cm2, parameter a is on the order of unity at a pump frequency of about 15
0 3 10ω ×�  s−1. 

Consequently, Fig. 1 and Eqs. (23)-(27) imply that, in order for the solutions of Eq. (20) in the 

parameter range 15
0 10ω �  s−1 and n0 < 1017 cm−3 (ωp < 1013 s−1) to lie at boundary II, the electron 

bunch should be ultrarelativistic (γ ∼ a∆ > 100). In what follows, we restrict ourselves to treating 

the problem in the parameter range corresponding to boundary II and to studying the induced fields 

for the relevant parameter values. The induced fields in region I were investigated in detail in Ref. 

[19]. As for the solutions in region III, expression (21) shows that the amplitude of the induced 

electric fields decreases exponentially when away from the bunch, so that these solutions are 

unimportant for the generation of high accelerating or focusing electric fields in plasmas. 

 
Fig. 1. The curves ∆ = ∆(E0) (boundary II), on which the expression under the square root in formula (21) equals 
zero, for γ = 10 and 100. Regions I and III lie outside and inside the curves, respectively. 

 

Now we evaluate the Green’s function for the parameters corresponding to boundary II. In the 

general case Eq. (21) describes coupled longitudinal and transverse waves with the wavenumbers 

k+ = (ωL /u)χ+ and k− = (ωL /u)χ− (or the frequencies ω+ = ωLχ+ and ω− = ωLχ−).  At boundary II, the 

expression under the square root in Eq. (21) vanishes and the equality k+ = k− (or ω+ = ω−) holds. 

Consequently, at the boundary, the wave excitation is resonant in character. Taking into account the 

fact that the roots of Eq. (20) are multiple and lie in the upper half-plane of the complex variable k, 
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we integrate expressions (12) and (13) over k to obtain 

 ( ) ( ) ( ) ( ) ( )4 cos sin ,z p p pG s e s k s k s k sμ μ μ μ
⎡ ⎤= π θ σ + σ σ⎣ ⎦  (29) 
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 (30) 

where 
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1
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μ
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σ
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± μ γ μ= γ + γ β∓    ( )

3
2 2

5

2 11 ,
2

B F F
a a

μ
± μ μ

βγ
= ± + γ −  (32) 

 ( ) 2 ,B a
μ

μ ±
± μ

μ

⎛ ⎞
= + σ⎜ ⎟⎜ ⎟σ⎝ ⎠

   ( ) ( )3 5 2 2

4 4

1
,

F F F

a
μ γ μ μμ

±
μ

β γ β ± + γ
=

σ
 (33) 

kp = ωp /u, θ(s) is the Heaviside unit-step function, and the function Fµ is defined by Eq. (24). In 

expressions (29)-(33) with µ = + and µ = −, the values of the parameters lie in the domains given by 

the curves ( )+
±Δ  and ( ) ,−

±Δ  respectively. For a = 1 (i.e., in the absence of a pump wave), the function 

G⊥ vanishes and the function Gz is given by the expression that coincides with the corresponding 

equations presented in [24, 25]. 

 

3. Wake Fields In The Case Of a Gaussian Bunch 

In this section we investigate the fields induced by a Gaussian electron bunch. We assume 

that the electron density in the bunch is described by the expression 

 ( )
2

2exp ,b
b

Nn
d

⎛ ⎞ξ
ξ = −⎜ ⎟

π ⎝ ⎠
 (34) 

where Nb is the mean bunch density such that 0.bN n�  

We substitute Eqs. (29) and (30) and expression (34) into Eq. (11) to obtain the following 

expressions for the fields induced by a moving bunch: 

 
( ) ( ) ( )

( ) ( )

0
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2 2

cos cos ; ,
2

b
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NE E
n

μ
μ μ μ μ

μ
μ μ μ μ

⎧ σ λ⎛ ⎞ζ⎪⎡ ⎤ξ = λβ σ ζ + ζ σ ζ Φ⎨ ⎜ ⎟⎣ ⎦ λ⎪ ⎝ ⎠⎩
σ λ ⎫⎛ ⎞ζ ⎪⎡ ⎤+ ζ σ ζ − σ ζ Φ ⎬⎜ ⎟⎣ ⎦ λ ⎪⎝ ⎠⎭

 
 (35) 



Armenian Journal of Physics, 2010, vol. 3, issue 3 

171 
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⎫⎪
⎬⎥
⎪⎭

 (36) 

where ζ = kp ξ, λ = kp d, Φ(x) = 1 − erf(x), erf(x) is the probability integral, and 
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1
1 ,

4
a
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μ
μ
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2 2

1 ,
2
μ

μ
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 ( ) ( )1
2 ,a μμ μ

± μ ±
μ

+
= σ +

σ
 (38) 
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2; cos 22 .
; sin 2

r t

x
i

x y yt
dte

x y yt
∞ −Φ⎛ ⎞ ⎛ ⎞

= ±⎜ ⎟ ⎜ ⎟Φ π⎝ ⎠ ⎝ ⎠
∫  (39) 

Note that the functions Φr(x, y) and Φi(x, y) can be expressed in terms of the probability integral 

erf(x + iy) of the complex argument. 

From expressions (35) and (39), we can see that, at large distances ahead of the bunch 

( 2 2pk dμξ > σ ), the longitudinal electric field is exponentially small, 

 ( )'
zE ξ �

22

0

1
2

b
p

N eE
n

−ζ λ

λβ
ζ λπ

 (40) 

and the transverse electric fields are unmodulated (i.e., they are essentially independent on ξ), 

 ( ) ( )
( )

( )

2 22 2

4 3 3 1 2
0

11 .
4

b
p

N eiE
n a a

μ −ζ λ
±μ+

±
μ

⎡ ⎤β γ
ξ λ − − +⎢ ⎥

σ π ζ λ⎢ ⎥⎣ ⎦
�  (41) 

Ahead of the bunch, the transverse electric fields are generated because the phase velocity 

0 0k cϕν = ω >  of the pump wave is higher than the bunch velocity for arbitrary values of the 

plasma and wave parameters. Consequently, part of the perturbations driven by the pump wave and 

bunch in the plasma can propagate at a phase velocity higher than the bunch velocity and can 

thereby overtake the bunch. In addition, expressions (18), (19), and (41) yield the relations 

( ) ( ) 0,i rE Eξ ξ� �  ( )' sin ,x iE E− ξ ψ�  and ( )' cos .y iE E− ξ ψ�  

As follows from expressions (18), (19), and (36), the transverse electric fields are modulated 

and circularly polarized. However, although the polarization vector of the transverse wave spans an 

entire circle, the circle’s radius depends on the distance ξ from the bunch. In fact, from expressions 

(18) and (19), we have 

 ( ) ( ) ( )'2 '2 2 2 2
max .x x r iE E E E E+ = ξ + ξ = ξ  (42) 
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In the general case, the electric field amplitude Emax (ξ) is a function of ξ. Modulated transverse 

plasma waves are generated in the interaction between a pump wave and induced waves with 

frequency ωLσµa and wavenumber (ωL /u)σµa. This interaction gives rise to oscillations with the 

combined frequencies ω0 − ωLσµa, ω0 + ωLσµa and combined wavenumbers k0 − (ωL /u)σµa, 

k0 + (ωL /u)σµa; the modulated wave results from the interference between these oscillations. 

 
Fig. 2. Dependence of the wavelength λp of the induced waves on the pump field amplitude E0 for n0 = 1017 cm−3 
and γ = 10 and 100. The results obtained for curves a' and d' are shown by solid and dashed lines, respectively. 

 

At large distances behind the bunch ( 0,ξ <  2 2pk dμξ > σ ), expressions (35) and (36) 

become 

 ( )'
zE ξ � ( ) ( )2 2 4

0

cos sin ,b
p

NE e
n

μ−σ λ
μ μ μ μ

⎡ ⎤λβ σ ζ + ζ σ ζ⎣ ⎦  (43) 
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2 2
2 2

4
4 3 3

0

11
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sin cos .

b
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NE i e
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μ−σ λμ+
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⎧ β γ⎪ξ λ − +⎨ σ⎪⎩
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�
 (44) 

In the above expressions, the terms that are proportional to ξ (or ζ) describe waves whose amplitude 

increases with distance from the bunch and whose wavelength is equal to (0) ,p p μλ = λ σ  where 

(0) 2p puλ = π ω  is the wavelength in the absence of a pump wave. Figure 2 shows the wavelength 

computed as a function of the pump wave amplitude for γ = 10 and 100. The parameters adopted for 

numerical calculations correspond to two boundary curves, a' and d'. One can see that the 

wavelength is maximum at 1 4
0 2 .pE E− γ�  In accordance with expression (31), the wavelength of 

the induced waves for the parameters corresponding to two other curves, b', and c', increases 

monotonically from (0)
pλ  to (0) 2pλ  as the pump wave amplitude increases from zero to E0max (see 

expression 28). Consequently, the pump wave can markedly change the wavelength of the excited 

waves; this effect is more pronounced for small values of γ (Fig. 2). Note that, in region I, the 
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wavelength λp increases monotonically with the pump wave intensity [19]. 

Let us analyze the above expressions for the following, practically important parameter range: 
17

0 10n ≤  cm−3 ( 132 10pω ≤ ×  s−1 ), IL ∼ 1016 W/cm2, 150 10ω �  s-1, and 1.γ�  

The coefficients in expressions (35) and (36) are comparatively easy to analyze in the two 

limiting cases ( )−
±Δ  (the parts of curves c' and b' in region II) and ( )+

±Δ  (the parts of curves d' and a' 

in region II). Thus, in the first case, Eqs. (31)-(33), (37) and (38) at ( )0a a γ�  give 

 1 2

1 ,
2−σ �    3 2

1 ,
2− −�    

2

1 ,
8−

λ
−�  (45) 

 ( ) ,−
± γ�    ( ) 1 ,

2
B −
± −�    ( ) 0,−

± �    ( )
2 2 ,
8

−
±

λ
−�    

4

1 .
4−

λ
+�  (46) 

For ( )+
±Δ = Δ  and 41 1 1,aγ − �  instead of Eqs. (45) and (46), we obtain 

 2
2 4

11 1,
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γ
σ −� �    ,

2
+

+
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2 2
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+
+
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+�  (47) 
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2 1 1 a
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A comparison of Eqs. (45) and (46) with (47) and (48) shows that the coefficients that 

describe the induced fields are much larger at ( )+
±Δ = Δ  (the parameters correspond to the curve a' or 

the curve d'). In what follows, we restrict ourselves to considering curves a' and d'. 

Ahead of the bunch, the transverse electric field at 21 1 4a > + γ  is equal in order of 

magnitude to ( ) ( ) 1 44 3 2
0 1 1 2.p bE N n a

−+ λ − γ�  Behind the bunch, the amplitude of the 

longitudinal electric field increases with the bunch width (the quantity d) and reaches its maximum 

at max max 2 .pk d +λ = σ�  At sufficiently large distances from the bunch ( 2 2pk dμξ > σ ) and for a 

longitudinal field close to its maximum value, Eq. (47) gives .+ +�  Consequently, the 

longitudinal electric field behind the bunch is largely determined by the second term in expression 

(43). At large distances behind the bunch, the amplitude of the transverse electric field is also 

maximum at max ;λ = λ  near this maximum, the transverse field is mainly determined by the second 

and third terms in the square brackets in expression (44). In addition, expressions (43), (44), (47) 

and (48) show that the induced field increases with the pump wave intensity. Consequently, for 

fixed but sufficiently large values of ζ, the induced field is maximum for sufficiently narrow 

bunches ( 1λ� ). 
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Fig. 3. Dependence of the amplitude of the induced longitudinal electric field on ξ at boundary II forn0 = 1017 
cm−3, nb = 1014 cm−3, ω0 = 1.82×1015 s−1, E0 = 3.04×109 V/cm, γ = 100, and 1 16.8pk − =  µm. The dotted, solid, 
and dashed curves were calculated for kpd = 0.7, kpd = kpdmax = 0.432, and kpd = 0.1, respectively. 

 
Fig. 4. Dependence of the amplitude of the induced longitudinal electric field on ξ at boundary II for d = dmax. 
The solid curve corresponds to 8

0 10E =  V/cm (∆ = 100.64, max 1.228pk d � ), the dashed curve corresponds to 
8

0 5 10E = ×  V/cm (∆ = 100, max 0.87pk d � ), and the dotted curve corresponds to 9
0 10E =  V/cm (∆ = 101.35, 

max 0.687pk d � ). The remaining parameter values are the same as in Fig. 3. 

 

Now, we consider the dependence of the induced fields on the bunch energy (or equivalently 

on the relativistic factor γ). According to Eqs. (43) and (44), the amplitude of the longitudinal wave 

depends weakly on the bunch energy, while the amplitude of the transverse wave increases with γ 

approximately as γ3/2 (see expression (44)) and is much larger than the longitudinal field amplitude. 

Consequently, for 1,γ�  the induced wave is nearly transverse.  

The characteristic features mentioned above are clearly seen from Figs. 3-5, which display the 

induced field amplitudes calculated from Eqs. (31)-(33) and (35)-(39) for the parameter values 

corresponding to curve d'. Note that, in Fig. 4, the dependence of the longitudinal field on the 

distance from the bunch was calculated for different intensities of the pump wave under the 
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condition 1 4
0 2 .pE E−< γ  From this figure, we can see that the wavelength of the excited waves 

decreases with increasing E0. 

It should be noted that the amplitude of the transverse wake field increases with distance from 

the bunch only when the frequency and amplitude of the pump wave, the plasma density, and the 

bunch energy (the relativistic factor γ) all satisfy relation (23), which determines the boundary II. 

Although these parameters are independent of each other, the situation in which they exactly 

correspond to boundary II is very difficult to realize in practice. Assuming that E0, ω0, and n0 are 

fixed, we briefly discuss the question about the width ∆γ of the region II; i.e., we determine the 

maximum possible deviation of the relativistic factor from boundary II for which the amplitude of 

the wake waves still increases. We consider two bunch energies, γ and γ0 ( 0 0γ − γ γ� ), assuming 

that the quantity γ lies in region I and that the quantity γ0, together with E0, ω0 and n0, satisfies 

relation (23), or, in other words, the values of these four parameters exactly correspond to boundary 

II. In Ref. [19] was shown that the values of γ lying in region I imply the excitation of two wake 

waves whose amplitudes and wavenumbers χ± are independent of the ξ coordinate [see expression 

(21)]. 

 

 
Fig. 5. Dependence of the amplitudes of the induced transverse electric field components Er (dashed curve), Ei 
(dotted curve) and the amplitude ( )1 22 2

max r iE E E= +  (solid curve) on ξ at boundary II for kpd = kpdmax  = 0.432. 
The remaining parameter values are the same as in Fig. 3 

 

Moreover, we have χ+ → χ− → aσ± as γ → γ0, in which case the corresponding expressions derived 

in [19] yield Eqs. (29) and (30) for the Green’s function. Consequently, the effect of the increase of 

the amplitude of the excited wake waves will also take place for region I under the conditions 

 ,p p
ak l k L< <
Δχ

 (49) 

where l is the distance from the bunch, L is the longitudinal plasma dimension, and 
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( ) 2 .+ − ±Δχ = χ −χ χ�  The second of the inequalities (49) implies that the wake wave amplitude 

will increase up to the plasma boundary. At kpL = a / ∆χ, conditions (49) yield the following estimate 

for the maximum relative width of region II: 

 
( )

2
0

2
0 00

0.7 1 .
ep

aS
k L

γ − γ
= =

γ γ βγ
 (50) 

Note that expression (50) is valid in the range γ0βe > 1. For the above values of the parameters and 

for kpL ∼ 10 – 103 (L ∼ 1 − 102 cm), the relative width of the region II is about S < 0.1 %. 

 

4. Conclusion 

We have investigated the excitation of linear wake waves by a one–dimensional electron 

bunch propagating in plasma in the presence of an intense electromagnetic pump wave with circular 

polarization. We have obtained and analyzed expressions describing the induced electromagnetic 

fields. It has been shown that there exist three ranges of the values of the plasma, bunch, and pump 

wave parameters in which the derived equations have qualitatively different solutions. In the most 

interesting case of resonant excitation (the values of the parameters correspond to the curves a' and 

d' of the boundary II), the amplitude of the transverse waves increases with increasing electron 

bunch energy and pump wave intensity. The amplitude of the longitudinal electric field depends 

weakly on the relativistic factor γ of the bunch electrons and increases with the pump wave 

intensity. The excitation of wake waves is most efficient in the case of narrow bunches such that 

max 2 .d d pλ π� �  For a sufficiently intense pump wave, the wavelength λp increases 

significantly as the bunch energy decreases. 

In conclusion note that although much attention has been devoted to one-dimensional wake 

fields (see, e.g., [1-18] and the literature cited therein), a more realistic three-dimensional case is of 

greater importance from the standpoint of practical applications. It can be expected that the 

characteristic features of the wake fields that have been revealed in this paper will also persist in the 

three-dimensional case, in which, however, new features may arise, stemming from the dependence 

on the radial coordinate. 
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