т. XXIX, № 6, 1976

УДК 581.039.575.24

Р. Б. АИРАПЕТЯН, М. А. СААКЯН, Р. С. БАБАЯН

ЗАЩИТНОЕ ДЕИСТВИЕ СУПЕРОПТИМАЛЬНЫХ ТЕМПЕРАТУР ПРИ ОБРАБОТКЕ СЕМЯН МУТАГЕНАМИ

Изучалось влияние кратковременного нагрева семян гороха и корешков лука на их устойчивость к рентгеновским лучам, этиленимину, гидроксиламину и формальдетилу.

Тепловое воздействие существенно повышает устойчивость клеток к этим агентам, критерием которой служила частота возникновения хромосомных перестроек. Данные свидетельствуют об индукции устойчивого состояния под влиянием супероптимальных температур. Делается вывод, что реактивное повышение устойчивости клеток и их хромосомного аппарата в данном случае носит неспецифичный характер.

Кратковременное воздействие супероптимальными температурами вызывает реактивное повышение устойчивости растительных клеток к высоким температурам и другим повреждающим агентам. Это явление установлено для эмногих видов растений и было названо тепловой эакалкой [1—3]. Аналогичное явление было обнаружено и в отношении семян [4].

Известно, что одним из достаточно эффективных модификаторов биологического действия редкоионизирующих излучений является супероптимальная температура [5, 8]. Высказано предположение, что защитное действие предрадиационного нагрева семян является частным случаем проявления тепловой закалки.

Существенный интерес представляет вопрос о воэможности подобной модификации генетического (цитогенетического) эффекта химических мутагенов. Поскольку тепловая закалжа—это неспецифичное повышение устойчивости клеток, то можно было априорно предполагать повышение под влиянием тепловых воздействий устойчивости клеток и к действию химических мутагенов. Этот вопрос представляет существенный интерес жак с точки зрения выяснения механизма модифицирующего действия тепловых закалок, так и с точки зрения изучения механизма мутационной изменчивости растений.

В настоящей работе приводятся некоторые экспериментальные данные об изменении устойчивости клеток к действию химических мутагегенов под влиянием нагрева семян.

Материал и методика. Опыты проводились на проростках гороха и корешках лука. Температурному воздействию семена и корешки подвергались в ультратермостате (точность заданной температуры—±0,5°С). Сразу же после нагрева семена облучались рентгеновскими лучами или замачивались в растворах химических мутагенов. Облучение рентгеновскими лучами проводилось аппаратом РУМ 11 (при 180 кв, 15 ма, мощности довы 500 р/мин). В растворах мутагенов семена и корешки замачивались

при комнатной температуре (18—22°C). Критерием повреждений служила частота клеток с аберрациями хромосом в первом митозе.

Для цитологического анализа фиксировались корешки гороха величиной 1—1,5 см (через 62—74 час. после воздействий). Термическому воздействию и обработке подвергались корешки лука величиной 5—7 мм. Корешки фиксировались через 12—18 час. после обработки. Материал фиксировался в ацеталкоголе (1:3), приготовлялись ацет-орсеиновые временные препараты.

Результаты и обсуждение. Приведенные в табл. 1 и 2 данные показывают, что как у клеток корешков лука (табл. 1), так и у клеток

Таблица 1 Влияние тепловой закалки (40°С, 15 мин) на выход аберраций хромосом у корешков лука при облучении их рентгеновскими лучами (дозой 200 р)

Варианты	Количество просмотренных клеток	Количество клеток с аберрациями хромосом	t
Контроль Тепловая закалка Облучение Тепловая закалка + облучение	609 548 537 476	1,64±0,52 2,74±0,73 6,14+1,02 3,15±0,40	(1,2) 1,24 (1,3 ₁ 3,95 (3,4) 2,74

зародыша сухих семян гороха (табл. 2) тепловое воздействие вызывает существенное повышение радиоустойчивости. Так, при облучении корешков лука дозой 200 р частота аберрантных клеток составляет

Таблица 2 Влияние тепловой закалки (80°С, 30 мин) на выход аберраций хромосом у гороха при облучении воздушию-сухих семян рентгеновскими лучами (дозой 10 кр)

Варианты	Количество корешков	Количество клеток	Из них абер- рантных	0/ ₀ аберрантных клеток
	Через 62 часа	после облуч	ения	
Контроль Закалка Облучение Закалка — облучение	20 16 16 16 16	664 684 740 910	6 18 64 44	0,90±0,36 2,63±0,65 8,65±1,05 4,83±0.72
	Через 74 часа	после облуч	ения	
Контроль Закалка Облучение Закалка + облучение	30 35 32 20	600 745 804 750	20 30 276 145	$ \begin{vmatrix} 3.33 \pm 0.69 \\ 4.03 \pm 0.71 \\ 34.33 \pm 1.67 \\ 18.35 \pm 1.36 \end{vmatrix} $

6,14%, при облучении же после предварительного нагрева при 40°С в течение 15 мин выход клеток с аберрациями снижается почти наполовину (3,15%). Такое же явление наблюдается у воздушно-сухих семян гороха.

Согласно данным, приведенным в табл. 3, тепловое воздействие перед обработкой корешков лука в растворе этиленимина существенно

ТаблицаЗ Влияние тепловой закалки (40—45°С, 10 мин) на устойчивость клеток корешков лука к этиленимину (0,03% раствор)

Варианты	Количество	Количество	Изних абер-	°/ ₀ аберрантных
	корешков	ана- и телофаз	рантных	клеток
Контроль	20	965	13	1,35±0,48
Этиленимин	21	199	17	8,54±1,98
Закалка 40°C + этиленимин	20	496	25	5,04±0,98
Закалка 45°C + этиленимин	20	443	20	4,51±1,36

снижает частоту аберрантных клеток, т. е. наблюдается, как и при рентгеноблучении, явление защитного действия предшествующего нагрева.

Поскольку этиленимин является радиомиметическим соединением, биологический эффект которого во многом сходен с эффектом ионизирующих лучей [6 и др.], можно было предположить, что явление защитного действия супероптимальных температур в данном случае проявляется настолько, насколько механизм действия рентгеновских лучей и этиленимина аналогичны. Это означало бы, что и модифицирующее действие температуры в определенных пределах специфично в отношении указанных агентов.

Таблица 4 Влияние тепловой закалки (85°C, 30 мин) на устойчивость хромосом гороха к гидроксиламину (ГА, 0,5%) и формалину (0,05%)

Вариангы	Количество корешков	Количество ана- и телофаз	Из них абер- ⁰ / _• аберрантны рантных клеток	
Контроль Закалка	19 16	2084 2391	20 26	0,96±0,22 1,09±0,21
ΓA	16	2906	69	2,37+0,26
Закалка + ГА Фармальдегид	10 19	1734 2738	30 61	1,73±0,11 2,23±0,27
Зокалка - формальдегид	26	2143	33	1,54+0,26

Данные, приведенные в табл. 4, пожазывают, что предварительный нагрев семян гороха оказывает оущественное защитное действие на выход хромосомных перестроек как при обработке семян гидроксиламином, так и формальдегидом. Эти соединения в отношении высших растений являются слабыми мутагенами и по механизму действия существенно отличаются как друг от друга, так и от этиленимина.

Сравнение данных табл. 2 и 4 показывает, что у семян гороха тепловая закалка аналогично изменяет эффекты таких различных агентов, как рентгеновские лучи, гидроксиламин и формалин.

Как уже отмечалось [5], при рентгенооблучении тепловая закалка клеток как семян, так и вегетирующих растений (традесканция) оказывает одинаковое защитное действие на физиологические показатели.

Тажим образом, экспериментальные данные, приведенные в настоящей работе, показывают, что тепловое воздействие вызывает неспецифичное повышение устойчивости клеток. Реактивное повышение устой-

чивости вследствие тепловых закалок неспецифично не только по ряду физиологических показателей, но и по выходу клеток с аберрациями хромосом (по повреждаемости хромосом). Необходимо отметить также, что полученные данные показывают тесную связь возникновения хромосомных аберраций с другими физиологическими процессами, с метаболизмом клеток вообще.

В настоящее время накапливается все больше данных о том, что возникновение хромосомных перестроек является следствием нарушений в ферментативных, метаболических процессах [7, 9]. Полученные нами данные согласуются с этим представлением.

Институт экспериментальной биологии АН АрмССР, Институт земледелия МСХ АрмССР

Поступило 17.III 1975 г.

A. P. ZUBPUMBSBUD, U. Z. VUZUMBUD, A. V. PUPUBUD

ՍՈՒՊԵՐՈՊՏԻՄԱԼ ՋԵՐՄՈՒԹՅԱՆ ՊԱՇՏՊԱՆԻՉ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՍԵՐՄԵՐԸ ՄՈՒՏԱԳԵՆՆԵՐՈՎ ՄՇԱԿԵԼԻՍ

Udhnhnid

Ուսումնասիրվել է սերմերի կարճատև (15—30 րոպե) տաքացման (40—80°C) ազդեցությունը նրանց դիմացկունության վրա ռենտդենյան ճառադայթների, էթիլենիմինի, հիդրօքսիլամինի և ֆորմալդեհիդի նկատմամբ։

Ջերմային մշակումը նշանակալիորեն բարձրացնում է բջիջների դիմացկունությունը այդ գործոնների նկատմամբ ըստ քրոմոսոմային խոտորումների առաջացման ցութանիշի։ Փորձառական տվյալները վկայում են սուպերօպտիմալ ջերմության ազդեցությամբ դիմացկուն վիճակի մակածման մասին։ Հետևաբար բջիջների և նրանց քրոմոսոմային համակարգի դիմացկունության թարձրացումը տվյալ դեպքում կրում է ոչ յուրահատուկ բնույթ։

ЛИТЕРАТУРА

- 1. Александров В. Я. Бот. журн., 41, 7, 1956.
- 2. Александров В. Я. Сб. Клетка и температура среды. М.—Л., 1964.
- 3. Александров В. Я. и Фельдман Н. Л. Бот, журн., 43, 2, 1958.
- 4. Бабаян Р. С. Изв. с/х наук МСХ АрмССР, 7, 1966.
- 5. Бабаян Р. С., Айрапетян Р. Б. Биологический журнал Армении, 22, 3, 1969.
- 6 Лавлес А. Генетические эффекты алкилирующих соединений. М., 1970.
- Соколов Н. Н., Сидоров Б. Н. Сб. Современные проблемы радиационной генетики. М., 1969.
- 8. Smtih Z., Caldecott R. S. Hereditas, 39, 1948.
- 9. Wolf S. Jour. of Cellular and Comp. Physiology, 58, 3, p. 2, 1961.