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Abstract The computations of the static and vibrational properties of four equiatomic Cs-based binary alloys viz. 
Cs0.5Li0.5, Cs0.5Na0.5, Cs0.5K0.5 and Cs0.5Rb0.5 to second order in local model potential is discussed in terms of real-space 
sum of Born von Karman central force constants.  The local field correlation functions due to Hartree (H), Ichimaru-
Utsumi (IU) and Sarkar et al. (S) are used to investigate influence of the screening effects on the aforesaid properties. 
Results for the lattice constants, i.e. 11C , 12C , 44C , 12 44C C− , 12 44C C  and bulk modulus B  obtained using the H-local 
field correction function have higher values in comparison with the results obtained for the same properties using IU- 
and S local field correction functions. The results for the Shear modulus ( C′ ), deviation from Cauchy’s relation, 
Poisson’s ratio σ , Young modulus Y, propagation velocity of elastic waves, phonon dispersion curves and degree of 
anisotropy A are highly appreciable for the four equiatomic Cs-based binary alloys. 
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1. Introduction 

In the study of various properties of solids, one frequently requires the knowledge of 

interaction energy between the ions or atoms. The studies of a pair-effective interionic interaction in 

simple metals have long history and originally they were not systematized and were concerned with 

individual metals on groups of metals. In recent years, considerable attention has been devoted to 

the theoretical study of the nature of effective interaction between constituent atom or ion in simple 

metals [1-8]. The bcc XX BA −1  (A=Cs; B=Li, Na, K, Rb) alloy system forms substitutional solid 

solution for the entire region of concentration X  of the second component, and the crystal binding 

of the solid solution is unchanged compared with that of the pure alkali metals. Theoretical studies 

about the lattice dynamics of the alloy systems have been devoted to Cs0.5Li0.5, Cs0.5Na0.5, Cs0.5K0.5 

and Cs0.5Rb0.5 systems since the lattice dynamics of the pure alkalis has been investigated in detail. 

But the work on the comprehensive study of static and vibrational properties of their binary alloys is 

almost negligible [1-9]. Only Soma et al. [10] have studied the phonon dispersion curves of 

Cs0.7K0.3, Cs0.7Rb0.3, Cs0.3Rb0.7 and Rb0.71Cs0.29 alloys. Very recently we have reported the static and 

vibrational properties of alkali metals and their equiatomic Na-based binary alloys using model 

potential formalism [1-5]. Also, Gajjar et al. [6] have studied the lattice dynamics of bcc Cs0.3K0.7 

alloy. Experimentally, Kamitakahara and Copley [11] have studied the lattice dynamics of 

1Rb KX X−  alloys with X = 0.06, 0.18 and 0.29 by neutron scattering. Recently, Chushak and 

Baumketner [12] have reported the dynamical properties of liquid Cs0.3K0.7 alloy. Most of the earlier 

theoretical studies are used various types of local as well as non-local model potential with older 

local field correction function. Lattice dynamics of Rb71K29 binary alloys has been studied by 
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Jacucci et al. [13] using MD technique. Also, the equiatomic alloys of alkali metals contain equal 

amount of volume, valence and the Fermi energy, which is reflected the nature of the alloying 

behavior. 

As a consequence of the disorder, the phonon spectra of alloys can differ considerably in 

character from those of pure metals. Localized vibrational modes may be present, and all phonons 

acquire a broadening and shift in frequency. Besides their importance for the thermodynamic 

properties, the lattice vibrations in alloy systems provide an ideal testing ground for any theory of 

elementary excitations in disordered systems because the energy wave vector relationship can be 

determined directly by either the coherence inelastic neutron scattering experimentally or by many 

theoretical models. Once the phonon spectrum of the alloy is known, the calculation of the 

vibrational contribution to the thermodynamic functions is straightforward [14]. 

Therefore, in the present article, we have decided to work on four equiatomic Cs-based binary 

alloys, i.e. Cs0.5Li0.5, Cs0.5Na0.5, Cs0.5K0.5 and Cs0.5Rb0.5 with PAA model [1-6]. Well-known single 

parametric local model potential of Gajjar et al. [1, 2, 6] is used to describe the electron-ion 

interaction. For the first time an advanced and more recent local field correlation functions due to 

Ichimaru-Utsumi (IU) [15] and Sarkar et al. [16] have been employed in such investigations. This 

helps in identifying the influence of exchange and correlation effects in the static form of Hartree 

(H) dielectric function [17]. 

 

2. Theoretical Methodology 

The phonon frequencies can be obtained by solving the standard secular determinantal 

equation [1-8] 

 ( ) 2 2det 4 0 ,D q Mαβ αβ− π ν δ =  (1) 

where M  is the ionic mass, ν  the phonon frequency and ( )D qαβ  the dynamical matrix in which 

the force between two ions depends only upon the distance between them: 

 ( ) ( ) ( )2

1 ,
n

i

n r r

d r
D q e

dr drαβ
α β =

Φ
= −∑ qr  (2) 

where ( )rΦ  is the interionic pair potential, and rα  and rβ  are thα  and thβ  Cartesian components of 

the position vector of thn  ion, respectively. 

The interionic pair potential ( )rΦ  is derived from the well-known relation [7, 8] 

 ( )
2 2

0
2

sin( ) ,Z e qrr F q dq
r qr

Ω
Φ = +

π ∫   (3)  

where ( )F q  is the energy wave number characteristic given by [7, 8] 
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with ( ) ( )0 , ,B HW q qΩ ε  and ( )qf  being the atomic volume, bare-ion pseudopotential, static 

Hartree dielectric function and local field correlation function, respectively.  

The bare-ion pseudopotential due to Gajjar et al. is given by [1, 2, 6] 
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. (5) 

Here, Z  and Cr  are the valence and parameter of the model potential, respectively. The details of 

the model potential are narrated in the literature [1, 2, 6]. In the present investigation, the local field 

correction functions due to H [15], IU [16] and S [17] are incorporated to see the impact of 

exchange and correlation effects. The details of all the local field corrections are below. 

The H-screening function [15] is purely static, and it does not include the exchange and 

correlation effects.  The expression of it is 

 ( ) 0=Xf . (6) 

The Ichimaru-Utsumi (IU)-local field correction function [16] is a fitting formula for the 

dielectric screening function of the degenerate electron liquids at metallic and lower densities, 

which accurately reproduces the Monte-Carlo results as well as it also satisfies the self-consistency 

condition in the compressibility sum rule and short-range correlations. The fitting formula is 
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Sarkar et al. (S) [17] have proposed a simple form of local field correction function on the 

basis of IU-local field correction function [16], which is of the form  

 ( ) ( ) ( ){ }4 21 1 exp ,S S Sf X A B Q C Q= − + −   (8) 

where XQ 2= . The parameters IUA , IUB , IUC , SA , SB  and SC  are the atomic volume dependent 

parameters of IU and S-local field correction functions. The mathematical expressions of these 

parameters are narrated in the respective papers of the local field correction functions [16, 17].  

The dynamical matrix element used in the present calculation finally takes the form 

 ( ) ( ) ( ) ,1 2∑ 







−+−=

n
trt

i KK
r
rr

KeqD βα
αβ

qr  (9) 

where tK  and rK  are the force constants between a pair of ions interacting through a central 

interaction and n specifies shell index: 
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Using these atomic force constants, we can generate interatomic force constants Kαβ  which 

can then be employed to investigate the elastic constants 
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Under the long-wave phonon method, the elastic constants were determined in [1-8]: 
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where a  is the lattice constant and ( )nN  is the number of atoms at the thn  neighbor separation. The 

shear modulus C ′  and bulk modulus B  are given by [1-8] 

 ' 11 12

2
C CC  −  =     

 (16) 

and 

 ( )
.

3
2 1211





 +

=
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The extent to which the interatomic forces are non-pair wise can be obtained by investigating 

the breakdown of the Cauchy relation. The Cauchy’s ratio is obtained by 4412 CC . 

Poisson’s ratio σ  is the second independent elastic parameter and is given as [1-8] 

 
( )

12

11 12

.C
C C

σ =
+

 (18) 

From the calculated values of the bulk modulus and Poisson’s ratio, Young modulus Y  is 

derived as [1-8] 

 3 (1 2 ) .Y B= − σ   (19) 

In the cubic system the propagation velocity of longitudinal and transverse waves in [100], 

[110] and [111] directions are given as [1-8] 
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The behavior of phonon frequencies in the limit independent of direction is given by [1-5] 
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The elastic anisotropy A  is the inverse of 2Y , i.e. [1-8] 
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The value of A  is unity when the material is elastically isotropic and differs from unity 

otherwise.  

 

3. Results and Discussion 

Constants and parameters employed for the present computational study are listed in Table 1. 

In evaluating integration in Eqs. (10) and (11) the upper limit of integral is taken as 40 kF so that a 

complete convergence of the model potential is achieved at higher momentum transfer and it covers 

all the oscillations of the form factor. Therefore, any artificial/fictitious cut-off in the present 

computations is avoided. In the present computation, the error associated will be of the order of 

210 6
Fk− . We have performed the real space sum analysis in r-space of 33 sets of the nearest 

neighbors, which are found sufficient for computing the elastic constants and bulk modulus using 
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interatomic force constants and for considering a long-range character for proper convergence of 

the calculation and to achieve a desired accuracy. The present model is valid for both ordered and 

disordered alloys [1-8].  

 
Table 1. Input parameters and constants for equiatomic Cs-based binary alloys. 

Metal Z kF (au) ΩO (au)3 rC (au) 

Li 1 0.5890 144.9 0.7738 
Na 1 0.4882 254.5 1.0765 
K 1 0.3947 481.4 1.3880 
Rb 1 0.3693 587.9 1.4837 
Cs 1 0.3412 745.5 1.9108 

 

 

In the present computation, the bcc crystal structure is considered for all the solid solutions. 

The lattice constants a  are obtained from the well-known relation ( )1 3
02Ω . Tables 2-5 display the 

computed values of some static and vibrational properties of four equiatomic Cs-based binary 

alloys. It is noted in Tables 2-5 that our results for 11C , 12C , 44C , 4412 CC − , 4412 CC  and bulk 

modulus B  from H-local field correction function give values higher than those obtained for the IU 

and S-local field correction functions. There is a good agreement for the calculated values of the 

Shear modulus C ′ , deviation from Cauchy’s relation, Poisson’s ratio σ , Young modulus Y , 

propagation velocity of elastic waves, phonon dispersion curves (PDC) and degree of anisotropy A  

using H, IU and S-local field correction functions.   

 
Table 2. Static and vibrational properties of Cs0.5Li0.5 alloy. 

Properties H IU S 

C11 in 1010 dyne-cm-2 8.01 6.73 5.76 

C12 in 1010 dyne-cm-2 7.33 5.61 5.11 

C44 in 1010 dyne-cm-2 2.99 3.76 2.74 

C ′ in 109 dyne-cm-2
 3.40 5.56 3.25 

B in 1010 dyne-cm-2 7.56 5.99 5.32 

(C12-C44) in 1010 dyne-cm-2 4.34 1.86 2.37 

Cauchy’s ratio (C11/C44) 2.45 1.49 1.86 

σ 0.48 0.45 0.47 

Y in 1010 dyne.cm-2 1.00 1.62 0.96 

vL [100] in 105 cm-sec-1 2.13 1.95 1.81 

vT [100] in 105 cm-sec-1 1.30 1.46 1.25 

vL [110] in 105 cm-sec-1 2.46 2.37 2.15 
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Table 2. Continuation 

vT1 [110] in 105 cm-sec-1 1.30 1.46 1.25 

vT2 [110] in 105 cm-sec-1 0.44 0.56 0.43 

vL [111] in 105 cm-sec-1 2.56 2.50 2.26 

vT [111] in 105 cm-sec-1 0.83 0.96 0.80 

Y1 in 1010 dyne-cm-2 7.95 8.09 6.38 

Y2 0.11 0.15 0.12 

A 8.81 6.76 8.43 

 
Table 3. Static and vibrational properties of Cs0.5Na0.5 alloy. 

Properties H IU S 

C11 in 1010 dyne-cm-2 8.15 5.87 5.95 

C12 in 1010 dyne-cm-2 7.53 5.09 5.37 

C44 in 1010 dyne-cm-2 2.44 2.38 2.30 

C ′ in 109 dyne-cm-2
 3.08 3.96 2.89 

B in 1010 dyne-cm-2 7.74 5.36 5.56 

(C12-C44) in 1010 dyne-cm-2 5.09 2.72 3.08 

Cauchy’s ratio (C11/C44) 3.08 2.14 2.34 

σ 0.48 0.46 0.47 

Y in 1010 dyne.cm-2 0.91 1.16 0.85 

vL [100] in 105 cm-sec-1 2.16 1.84 1.85 

vT [100] in 105 cm-sec-1 1.18 1.17 1.15 

vL [110] in 105 cm-sec-1 2.43 2.12 2.13 

vT1 [110] in 105 cm-sec-1 1.18 1.17 1.15 

vT2 [110] in 105 cm-sec-1 0.42 0.48 0.41 

vL [111] in 105 cm-sec-1 2.51 2.21 2.22 

vT [111] in 105 cm-sec-1 0.76 0.78 0.74 

Y1 in 1010 dyne-cm-2 7.46 6.09 6.03 

Y2 0.13 0.17 0.13 

A 7.93 6.00 7.94 

 
Table 4. Static and vibrational properties of Cs0.5K0.5 alloy. 

Properties H IU S 

C11 in 1010 dyne-cm-2 6.87 4.92 4.86 

C12 in 1010 dyne-cm-2 6.35 4.33 4.40 

C44 in 1010 dyne-cm-2 1.95 1.96 1.79 

C ′ in 109 dyne-cm-2
 2.61 2.93 2.32 

B in 1010 dyne-cm-2 6.52 4.53 4.55 
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Table 4. Continuation 

(C12-C44) in 1010 dyne-cm-2 4.40 2.38 2.61 

Cauchy’s ratio (C11/C44) 3.26 2.21 2.46 

σ 0.48 0.47 0.47 

Y in 1010 dyne.cm-2 0.77 0.86 0.68 

vL [100] in 105 cm-sec-1 2.09 1.77 1.76 

vT [100] in 105 cm-sec-1 1.11 1.12 1.07 

vL [110] in 105 cm-sec-1 2.33 2.05 2.02 

vT1 [110] in 105 cm-sec-1 1.11 1.12 1.07 

vT2 [110] in 105 cm-sec-1 0.41 0.43 0.38 

vL [111] in 105 cm-sec-1 2.41 2.13 2.10 

vT [111] in 105 cm-sec-1 0.72 0.73 0.69 

Y1 in 1010 dyne-cm-2 6.85 5.62 5.36 

Y2 0.13 0.15 0.13 

A 7.47 6.66 7.70 

 
Table 5. Static and vibrational properties of Cs0.5Rb0.5 alloy. 

Properties H IU S 

C11 in 1010 dyne-cm-2 6.04 4.26 4.29 

C12 in 1010 dyne-cm-2 5.59 3.77 3.88 

C44 in 1010 dyne-cm-2 1.74 1.77 1.60 

C ′ in 109 dyne-cm-2
 2.26 2.43 2.05 

B in 1010 dyne-cm-2 5.74 3.93 4.02 

(C12-C44) in 1010 dyne-cm-2 3.84 2.00 2.29 

Cauchy’s ratio (C11/C44) 3.20 2.13 2.43 

σ 0.48 0.47 0.47 

Y in 1010 dyne.cm-2 0.67 0.71 0.60 

vL [100] in 105 cm-sec-1 1.81 1.52 1.53 

vT [100] in 105 cm-sec-1 0.97 0.98 0.93 

vL [110] in 105 cm-sec-1 2.03 1.77 1.76 

vT1 [110] in 105 cm-sec-1 0.97 0.98 0.93 

vT2 [110] in 105 cm-sec-1 0.35 0.36 0.33 

vL [111] in 105 cm-sec-1 2.10 1.86 1.83 

vT [111] in 105 cm-sec-1 0.63 0.64 0.60 

Y1 in 1010 dyne-cm-2 5.19 4.24 4.08 

Y2 0.13 0.14 0.13 

A 7.73 7.29 7.80 
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It is noticed from the present study that the percentile influence of the IU-local field 

correction function with respect to the static H-local field correction function on the vibrational 

properties of Cs0.5Li0.5, Cs0.5Na0.5, Cs0.5K0.5 and Cs0.5Rb0.5 is found to be 1.76%-63.53%, 0.85%-

46.56%, 0.51%-45.91% and 1.59%-33.44%, respectively. Such influence of the S-local field 

correction function with respect to the static H-local field correction function on the vibrational 

properties is as follows: for Cs0.5Li0.5 is 2.27%-30.29%, for Cs0.5Na0.5 is 2.08%-39.49%, for Cs0.5K0.5 

is 0%-40.68% and for Cs0.5Rb0.5 is 0%-40.36%. This clearly indicates that the local field 

correlations play a very effective role in explaining correctly the static and dynamic properties of 

such solid solutions.     

The interionic pair potentials ( )rΦ  computed from the three local field correction functions 

are displayed in Figures 1–4 for four equiatomic Cs-based binary alloys.  We have seen from Figure 

1 that the well depth is slightly increasing due to influence of IU- and S-screening functions as 

compared to H-screening. The first zero position ( )0rrV =  of interionic pair potentials of Cs0.5Li0.5 

alloy due to H-, IU- and S-functions occurs at ≈0r 15.8 au, 8.3 au and 8.3 au, respectively. The 

presently generated interionic pair potentials of Cs0.5Na0.5 alloy are displayed in Figure 2. The first 

zero for ( )0rrV =  due to H-, IU- and S-functions occurs at ≈0r 16.1 au, 9.5 au and 9.5 au, 

respectively. The presently calculated interionic pair potentials of Cs0.5K0.5 alloy are observed in 

Figure 3. The position of interionic pair potentials at 0rr =  due to H-function occurs at =0r 17.8 au, 

while influence of IU- and S-screenings enhances this zero slightly and occurs at ≤0r  10.6 au. The 

first zero position of interionic pair potentials at 0rr =  of Cs0.5Rb0.5 at 0rr =  due to H-, IU- and S-

functions occurs at ≈0r 18.2 au, 11.8 au and 11.8 au, respectively. Also, we have observed from 

Figures 1–4 that the inclusion of screening functions hardly changes the nature of the pair 

potentials, except around the first minimum. Thus, the inclusion of exchange and correlations on the 

( )0rrV =  is substantial. The pair potential due to IU-screening function is lying between those of 

H- and S-screening function. The results of the interionic pair potentials show significant 

oscillations and potential energy remains positive in the larger r-region. Thus, the Coulomb 

repulsive potential part dominates the oscillations due to ion-electron-ion interactions. Most of the 

interionic pair potential curves of four equiatomic Cs-based binary alloys show hardcore nature. 

Also, we observed from the interionic pair potential curves that, when we move from Cs0.5Li0.5 → 

Cs0.5Rb0.5 alloys, the depth of the interionic pair potential increases with increase in the average 

volume of the solid alloys. But the well width increases compared to H-screening. The maximum 

depth in the interionic pair potentials is obtained for S-function. The interionic pair potentials 

obtained from Eq. (3) is then used in the computations of the lattice dynamics of the Cs-based 

binary alloys. 
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Fig. 1. Interionic pair potential of Cs0.5Li0.5 alloy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Interionic pair potential of Cs0.5Na0.5 alloy. 
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Fig. 3. Interionic pair potential of Cs0.5K0.5 alloy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Interionic pair potential of Cs0.5Rb0.5 alloy. 
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A good description of Cs or Rb is rather more complicated than that of the other alkali 

elements. The problem stems from the fact that at pure Cs or Rb density the compressibility of the 

electron gas is close to zero, and is conceivably negative. Hence, the normal pseudopotential 

perturbation approach based on the electron gas as the zero order approximation is rather dubious. 

This is because one is starting with a thermodynamically unstable system to provide a description of 

one which is thermodynamically stable. The way out of this dilemma, was used to scale the electron 

gas density parameter, i.e. the Wigner-Seitz radius Sr  by the band structure effective mass *m , 

which then means that one was dealing with an effective density for which the electron gas 

compressibility was large and positive. The physical meaning of this approach was not clear, but it 

bears a close resembles to that the effect of large core polarization of Cs or Rb could be taken into 

account by a suitable scaling of Sr , also in the direction of large, positive compressibility [13]. But, 

in the present results of the lattice dynamics of the equiatomic Cs-based binary alloys, we have 

made straightforward computation without any assumptions.   

We have also studied the PDC of four equiatomic Cs-based binary alloys viz. Cs0.5Li0.5, 

Cs0.5Na0.5, Cs0.5K0.5 and Cs0.5Rb0.5 along [100], [110] and [111] directions of high symmetry, which 

are displayed in Figures 5-8. We have found that the phonon frequencies in the longitudinal branch 

(L) are more sensitive to the exchange and correlation effects in comparison with the transverse 

branches (T1 and T2). The phonon frequencies in the longitudinal branch are suppressed due to IU-

local field correction and enhanced due to S-local field correction functions, compared to the 

frequencies due to static H-local field correction function. While in the transverse branch, the 

effects of exchange and correlations enhanced slightly the phonon modes. It is found that at the 

zone boundaries of [100] and [111] directions of high symmetry, i.e. for the larger momentum 

transfer the effects of local field correlations are almost negligible. These dispersion curves are not 

showing any abnormality in the three regions of high symmetry directions and are exhibiting 

qualitative behavior like metallic elements. The phonon frequencies computed from IU-local field 

correction functions diverging from static H-function in [100] [111] and [100] directions of high 

symmetry are about 0%-34.82%, 0%-129.95%, 0%-15.86% and 0%-16.25% for Cs0.5Li0.5, 

Cs0.5Na0.5, Cs0.5K0.5 and Cs0.5Rb0.5 solid alloys, respectively. The phonon frequencies computed 

from S-local field correction functions differed from static H-function in [100], [111] and [100] of 

high symmetry directions are 0%-99.27% for Cs0.5Li0.5, 0%-148.73% for Cs0.5Na0.5, 0%-99.39% for 

Cs0.5K0.5 and 0%-13.22% for Cs0.5Rb0.5 solid solutions. 

Also, we observed from the PDC that, when we move from Cs0.5Li0.5 → Cs0.5Rb0.5 alloys, the 

phonon frequency decreases with increase in the average volume of the solid alloys. The 

experimental phonon frequencies of such alloys are not available in the literature for further 

comparison and we find only few concrete remarks. But, in the absence of experimental information 



Armenian Journal of Physics, 2010, vol. 3, issue 2 

128 

such calculations may be considered as one of the guidelines for further investigations either 

theoretical or experimental. Hence, such study could be extended for the other types of binary 

alloys. The relativistic effect of the heavier alkali element like Cs to other alkali elements is 

significant, but in the case of equiatomic alloys, this effect is comparatively small. Therefore, we 

have ignored relativistic effects of the heavier atom for the sake of simplicity.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Phonon dispersion curves of Cs0.5Li0.5 alloy. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Phonon dispersion curves of Cs0.5Na0.5 alloy. 
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Fig. 7. Phonon dispersion curves of Cs0.5K0.5 alloy. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Phonon dispersion curves of Cs0.5Rb0.5 alloy. 

 

4. Conclusions 

We conclude that the present model is successful in explaining the static and vibrational 

properties of equiatomic Cs-based binary alloys and hence, it could be explored for predicting the 

behavior of other such solid solutions. The comparison of present theoretical findings helps us to 

note that the binding of XX BA −1  (A=Cs; B=Li, Na, K, Rb) is comparable to the pure metals, and 

hence, behaves like a solid metallic alloy. This can be confirmed by investigating its total crystal 

energy and heat of solution. Such study is under progress and the results will be reported in due 

course of the time. From the present experience, we also conclude that it should be interesting to 

apply other local pseudopotentials for such comprehensive study to judge and confirm the wider 

applicability of the potential. 
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