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Abstract: The explicit form of linearized gauge and generalized ’Weyl invariant’ interactions of scalar and general 
higher even spin fields in the DAdS  space constructed in [1] is reviewed. Also a linearized interaction of vector field 
with general higher even spin gauge field is obtained. It is shown that the gauge invariant action of the linearized vector 
field interacting with the higher spin field also includes the whole tower of invariant actions for couplings of the same 
vector field with the gauge fields of smaller even spin. 

 

1. Introduction 

After discovering the 4 3AdS CFT/  correspondence of the critical ( )O N  sigma model [4] 

interest in the interacting theory of an arbitrary even high spin field drastically increased. So in the 

center of our attention is a theory of Fradkin–Vasiliev type [5] in the Fronsdal’s metric formulation 

[6]. This case of 1D DAdS CFT −/  correspondence is also of great interest because supersymmetry and 

BPS arguments are absent and because both conformal points of the boundary theory (i.e. unstable 

free field theory and critical interacting point, in the large N  limit) correspond to the same higher 

spin theory and are connected on the boundary by a Legendre transformation which corresponds to 

different boundary conditions (regular dimension one or shadow dimension two) in the quantization 

of the bulk scalar field [7]. Existence of this scalar field in higher spin gauge theory is also an 

interesting and important phenomenon and supports the spontaneous symmetry breaking 

mechanism and mass creation for initially massless gauge fields due to corresponding possible 

interactions (see for example [8],[9]). From this point of view any construction of a reasonable even 

linearized interaction is an interesting and important task in this reconstruction of the higher spin 

gauge theory from the holographic dual CFT and can be controlled by corresponding information 

about the anomalous dimensions of the dual global symmetry currents that fulfill the conservation 

conditions in the large N  limit. Therefore we see that construction of the conformal coupling of the 

scalar with a general even higher spin gauge field appears as an interesting example of an 

interaction which is applicable for many different quantum one-loop calculations such as the trace 

anomaly of the scalar in the external higher spin gauge field and so on [10]. 

In this article we construct a generalization of the well-known action for the conformally 

coupled scalar field in D  dimensions in external gravity: 

 21 ( 2) ( ) ,
2 4( 1)

D DS d z G G R G
D

 
 µν
 µ ν 
 

−
= − ∇ φ∇ φ− φ

−
∫  (1) 
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to the coupling with the linearized external higher spin   gauge field. We show that the gauge and 

’Weyl’ invariant interaction of the scalar with the spin   Fronsdal gauge field can be constructed 

only if we add the same type of interaction with all lower even spin gauge fields. In other words, we 

can construct a self-consistent interaction of a gauge field with the conformally coupled scalar only 

with the whole finite tower of gauge fields with even spins in the range 2 s≤ ≤  . We use the same 

notations and conventions as in [1]. In section 2 we explicitly construct a linearized interaction 

Lagrangian of the conformal scalar field with the spin   gauge field using Noether’s procedure for 

higher spin gauge invariance. In section 3 we extend our investigation including Noether’s 

procedure for generalized Weyl invariance and obtain a unique interacting action after nontrivial 

and tedious calculations. In section 4 we construct the linearized gauge invariant interaction of 

electromagnetic field with the higher spin fields. Note also that some consideration of nonlinear 

gauge invariant couplings of the scalar field on the level of the equation of motion can be found in 

[11] and on the level of the BRST formalism for higher spin fields in [12]. Finalizing introduction 

we can say that this is a linearized interaction with the scalar for conformal higher spin theory of the 

type discussed in [13, 14]. 

 

2. Gauge Invariant Interaction for the Scalar Field Coupled to Spin   Field 

Here we construct gauge invariant action for coupling of the scalar to the general spin   field. 

Following [1] we apply the following gauge transformation: 

 1 2 1

1 2 1

1 ( ) ( ) ( )l

l
z z z−

−

µ µ ...µ
ε µ µ µδ φ = ε ∇ ∇ ...∇ φ ,



 (2) 

 1 1 2 1 1 2 1 2( ) ( ) ( )0 0
(1)2l l l l lh l h− − −µ ...µ µ µ µ ...µ αµ ...µ µ ...µ

ε ε αδ = ∇ ε , δ = ε , 

 

 (3) 

 
3 1

0
l−

α
αµ ...µε =


 (4) 

to the action 

 2
0 2

1 ( 2)( ) [ ]
2 4

D D DS d z g
L

µ
µ

−
φ = − ∇ φ∇ φ+ φ ,∫  (5) 

and obtain the following variation for Noether’s procedure: 1

2
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=

µ ...µ
µ µ − + µ µ

=

− − 
δ φ = − −∇ ε Ψ + − 

− − −
+ ∇ φ− φ ∇ ...∇ ε ∇ ...∇ φ , − 

∫ ∑

∑









  

  (7) 

where 

                                                 
1 For compactness we introduce shortened notations for divergences of the tensorial symmetry parameters  
 (1) (2)

… … … … …µν λµν µ νλµ
λ ν λε = ∇ ε , ε = ∇ ∇ ε ,  (6) 
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8
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m m m m m
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m g g
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L

+
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µ ...µ µ µ µ µ

αβ
µ µ µ µ α µ µ β

µ µ µ µ µ µ

Ψ = − ∇ ...∇ φ∇ ...∇ φ−

− ∇ ...∇ ∇ φ∇ ...∇ ∇ φ−

+ − + −
− ∇ ...∇ φ∇ ...∇ φ ,

 (8) 

and we admitted symmetrization for the set 1 2m…µ µ,  of indices. So we see that miraculously the 

coefficients in (8) don’t depend on l  ! All  - dependence is concentrated in the second line of (7) 

proportional to the equation of motion for the action (5). This part like in the spin fourcase can be 

removed by appropriate field redefinition (see (13), (14), (B.6)) 

 
2

1 2 2

1 1 2 2

(2 )

2

1 ( ),
2( 2 1)

l

m
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m

m

m h
l m

−

− −
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µ µ α µ µ

=

−
φ→ φ+ ∇ ...∇ ∇ ...∇ φ

− +∑  (9) 

and we can drop these terms from our consideration. Thus we obtain the following spin   gauge 

invariant action: 

 
2 ( 2 )(2) (4) ( ) (2 )

0 1
1

( ) ( ) ( ),
l

mGI m
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S h h h S S hΨ
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−

− −µ µ µ µ∇ ...∇ φ∇ ...∇ φ ,

 (11) 

and the final form of the improved gauge transformations 

 1 2 1

1 2 1

1 ( ) ( ) ( )l

l
z z z−

−

µ µ ...µ
ε µ µ µδ φ = ε ∇ ∇ ...∇ φ ,



 (12) 

 1 2 2 1 2 1 1 2 2 1 2 2(2 ) ( (2 ) ) (2 ) (2 )0 0
(1)2 2m m m m mm m m mh m h− − −µ ...µ µ µ ...µ αµ ...µ µ ...µ

ε ε αδ = ∇ ε , δ = ε ,
 

 (13) 

 1 2 1 1 2 1(2 )
( 2 )

1
2 .

1
m mm

l m

m
m l

m
− −µ ...µ µ ...µ

−

− − 
ε = ε , ≤ − 
 



 (14) 

So we found the gauge invariant action for a general spin l  gauge field coupled to a scalar 

and this action possess the following property: it redefines the gauge parameters for lower spin 

gauge fields coupled to scalar, which means: The gauge invariant action (2) (4) ( )( )GIS h h hφ, , ,...,   for 

a spin   gauge field coupled to a scalar includes gauge invariant actions of a tower of all smaller 

even spin gauge fields coupled to the same scalar in an analogous way. 
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3. Weyl Invariant Action for a Higher Spin Field Coupled to a Scalar 

In this section we introduce generalized Weyl transformations for higher spin fields and 

derive a Weyl invariant action for a higher spin field coupled to a scalar field. Following [1,3] we 

write the generalized Weyl transformation for the evenspin l  field in the form 

 1 1 2 1( ) ( )0 ( 1)l l l lh l l g− −µ ...µ µ ...µ µ µ
σδ = − σ ,



 (15) 

 1 2 1 2( )0 2( 2 4)l lh D l− −αµ ...µ µ ...µ
σ αδ = + − σ ,



 (16) 

 1 2

1 2

1 l

l

−

−

µ ...µ
σ µ µδ φ = ∆ σ ∇ ...∇ φ.

 

 (17) 

Then we assume that the Weyl invariant action for a spin l  field should be accompanied with 

similar Weyl invariant actions for smaller spin gauge fields and therefore can be constructed from 

(10) adding 2l  additional terms 

 
( 2 )

2
(2) (4) ( ) (2) ( ) (2 )

1
1

( ) ( ) ( )
m

l
WI GI r m

m
S h h h S h h S h

/

=

φ, , , ..., = φ, ,..., + φ, ,∑   (18) 

where each 
( 2 )

1

mrS  is gauge invariant itself. Now we will see that the generalization of the Ricci 

scalar for a higher spin field namely the trace of Fronsdal’s operator [6, 9] 

 
1 2 1 2 1 2

2 2 1 21
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( ) ) ( )(
2

1 ( )
2

2 ( 1)( 3)
2

l l l

l l

r TrF h h h

l l D lh h
L
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− −
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α β α

= − = ∇ ∇ −
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− ∇ ∇ − .

  

 

 (19) 

is the only gauge invariant combination of two derivatives and a higher spin field which we need to 

construct the Weyl invariant action (18) starting from (10). We will use the following strategy for 

solving our problem: We apply transformation (15)-(17) to (10) and try to compensate it with the 

variation of 
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1
1

( )
m

l
r m

m
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/
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where 
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l
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=
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





 (20) 

introducing necessarily gauge and Weyl transformations for lower spin gauge fields: 

 1 2 1 2 2 2 1 2(2 ) ( )
( 2 )2 (2 1) 1 2m m m mm m
l mh m m C g m l− −µ ...µ µ ...µ µ µ

σ −δ = − σ , = ,..., / ,

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 (21) 

 2 1C / = .
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In other words, we solve the equation  
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which consists of a system of 1l +  equations for ( 2 1)( 2 2 )2l l/ + / + /  variables: 2

,∆


  

  (24) 

 1 2 2mC m … l, = , , , / ,


 (25) 

 2 0 1 1 1 2n
s n …s s l, = , , − ; = ,..., / .ξ  (26) 

But when we find 2 k/ −ξ


 we also find 2
s k

s
−ξ  for any s k≥ . In other words, we find a whole diagonal 

of this triangle matrix  

 

1 2 12 2

0 2 21 2 1
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2 22
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4 4
0
2
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ξ ξ . . . ξ ξ 

 ξ ξ . . . ξ
 

. . . . . 
 . . . .
 
ξ ξ 
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



   





  



 

 (34) 

which helps us to solve the whole system. We have two equations for any vertical line of this matrix 

besides the last, for which we have one equation for ∆ . We start from the last vertical line and go to 

the left. When we take any line and two equations for that line of variables, we have only two 

variables to find if we already solved all lines to the right of that one. That means that our system 

has a unique solution. We don’t write all complicated Weyl variations of (23) and present here the 

resulting system of equations for the unknown variables (24-26):  

 1 ,
2
D

∆ = −


 (35) 
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2
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/
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−
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 
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ξ

ξ ξ
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The solution of this system is unique: 1 2D∆ = ∆ = −


 and  
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m

m
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/ −
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




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2This system includes also (22) as an equation for 2C /



. 
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2

22
2 1
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2 1 ( 1)( 1)
12 ( 2 )
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m

mC
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/ −
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








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 (40) 

These completely fix (20) and therefore the full Weyl invariant action (18) and also determine the 

transformation law for the whole tower of higher spin gauge fields (21).  

 

4. Spin One Field Couplings to the Higher Spin Gauge Fields 

Now we generalize the result of [2] for coupling of vector field to the spin four field to the 

general higher even spin case. We work in the flat space because that case is enough for our 

interests, although some discussion connected with AdS space is provided below. So we start from 

the free field Lagrangian 3

2
0

1 1 1 ( )
4 2 2

L F F A A Aµν µ ν
µν µ ν= − = − ∂ ∂ + ∂ ,

 

  (41) 

 F A A A Aµ
µν µ ν ν µ µ= ∂ − ∂ , ∂ = ∂  (42) 

for an electromagnetic field and use the Noether procedure with the following starting variation  
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1 2 1

1 l
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µ ...µ
ε µ µ µ µ µδ = ε ∇ ...∇ .
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From very long and tedious calculations we get  
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where  
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−
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and we admitted symmetrization for the set 1 2m…µ µ  of indices. This means that when we change 

our initial variation (43) to  

                                                 
3From now on we will never make a difference between a variation of the Lagrangians or the actions discarding all total 
derivative terms and admitting partial integration if necessary. 
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and also take into account appropriate field redefinition  
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/
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 (47) 

we can see that the gauge invariant Lagrangian for interaction of electromagnetic field with the 

higher even spin   field is  

 1 2

1 2

2
(2 )(2) (4) ( ) (2 )

1
1

1( ) ( )
2

m

m

m m

m
L A h h h h A

m

/
µ ...µ

µ µ ...µ µ
=

, , , ..., = Ψ .∑


  (48) 

This result is similar to the scalar case investigated in the section 2. The same tower of even 

spin gauge fields appears when we construct gauge invariant interaction with higher spin fields. The 

generalization to the non-Abelian scalar or vector (Yang-Mills) fields is trivial. In scalar case we 

went further and constructed Weyl invariant lagrangian. We couldn’t generalize Weyl invariance 

for spin one case. That is the price for spin one manifest gauge invariance (in all interactions the 

vector field is represented by it’s curvature Fµν ). Here we would like to mention that DAdS  

corrections to (45) and has following basic properties. As in the scalar case there are no 41 L/  or 

higher corrections. The 21 L/  term is proportional to 2− . For 1-1-2 interaction we don’thave any 

difference between interaction in the flat space and AdS. The s-s-2s case investigated in [2] also can 

be written in AdS in the same form as in the flat space like 1-1-2 case. The only difference is that 

curvatures of higher spin ( 1s > )fields have analytical expansion in powers of cosmological 

constant [10], so the background changes interaction, but that difference is encoded in curvatures 

and are finite series in powers of 21 L/  in AdS case.  

 

Conclusion 

We constructed a gauge and generalized Weyl invariant interacting Lagrangian for a 

linearized higher even spin gauge field and a conformally coupled scalar field in DAdS  space. We 

also constructed gauge invariant interaction of vector field with higher spin fields. The resulting 

Lagrangian for the spin   field includes all lower even spin gauge fields also with the same type of 

interaction with the same scalar or vector field. These results can be used for construction of a more 

complicated interactions between different higher spin gauge fields in AdS  space (see [15, 16]).  
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Appendix 

We use the following commutation relations in :DAdS   

 1 1 2 1

1 22

( 1)[ ]
2

l l

k k

… k k… …
L

− −µ µ µµ ...µµ
µ µ µ µ

−
ε ∇ ,∇ . ∇ φ = ε ∇ ∇ φ,
 

 (B.1) 

 1 1 1 1

1 ( 1)2

2 ( 2) ( 1)[ ]
2

l k l

k

…
k

k D l k k…
L

− + −µ µ µµ ...µµ
µ µ −

+ − − +
∇ ∇ ,∇ ε = ε ,

 

 (B.2) 

 1 1 1 2 1

1 12

(2 3)[ ]
2

l l

k k

… …k D k… …
L

− −µ µ µ µ µµ
µ µ µ µ µ

+ −
ε ∇ ,∇ ∇ ∇ φ = ε ∇ ∇ φ,
 

 (B.3) 

 1 1 1 2 1

1 1

2
2

( 2)[ ]l l

k k

… …k D k… …
L

− −µ µ µ µ µ
µ µ µ µ

+ −
ε ∇ ,∇ ∇ φ = ε ∇ ∇ φ,
 

 (B.4) 

where 1 1lµ µε −...


 is the symmetric and traceless tensor. Finally we list all necessary binomial identities:  

 
0 0

1 1
( 1) ( 1) ( 1)

1 1

n m n m
k n m k

k k

n n n n
k m m k m

− −
−

= =

− −       
− = − , − = ,       − + −       

∑ ∑  (B.5) 

 
1 1 1 11
1 2 12 1

n n n m mm
k k k m ml m

− − − − − −         −
= + , = .         − − −− +         

 

 (B.6) 

 


