УДК 575.113

м. х казарян

СРАВНИТЕЛЬНОЕ ИЗУЧЕНИЕ РАДИОЧУВСТВИТЕЛЬНОСТИ У КАРЛИКОВЫХ ГИБРИДОВ ПШЕНИЦЫ В ЗАВИСИМОСТИ ОТ СОДЕРЖАНИЯ В КЛЕТКАХ ЭНДОГЕННЫХ ТИОЛОВ

Изучалась природная и модифицированная (действие рентгеновских лучей) радиочувствительность у карликовых гибридов пшеницы в зависимости от содержания в клетках эндогенных тиолов.

Выяснилось, что по уровню естественного мутирования хромосом в клетках корневой меристемы двухдневных проростков существенных различий между гибридами и их родительскими сортами нет.

Гены гибридной карликовости широко распространены у различных видов пшеницы. Их действие на фенотип организма проявляется в первом (F₁) или во втором (F₂) поколениях. Генетические причины гибридной карликовости (Dwarfness) изучены довольно обстоятельно [7—11, 14]. Большая работа сделана по выявлению генов Dwarfness у видов пшеницы Triticum aestivum и T. durum в отделе генетики растений Арм. НИИЗ [1, 4].

Представляет интерес исследование природной и модифицированной радиочувствительности карликовых гибридов и ее зависимость от содержания в клетках эндогенных тиолов.

Вопрос о том, как особенности генотипа гибридной карликовости отражены в клеточных структурах, изучен мало. В этом отношении известны данные Моррисона [9] и Мура [10], согласно которым по уровню естественных хромосомных перестроек резких различий между dwarf гибридом и его родителями не замечается. Однако сведения, касающиеся уровня индуцированного (действие облучения) мутирования хромосом у карликовых гибридов и их родительских сортов, нам не известны.

В литературе нет также информации о количественных изменениях внутриклеточных сульфгидрильных (SH) групп у гибридов с генотипом гибридной карликовости. Известно, что эндогенные SH-соединения в значительной степени определяют радиорезистентность организмов и клеток животного и растительного происхождения [2, 3, 5, 6, 12, 13].

За 1972—1973 гг. нами проводились исследования по сравнительному изучению радиочувствительности и содержания эндогенных белковых сульфгидрильных (Б-SH) соединений у внутривидовых карликовых гибридов пшеницы и их родительских форм.

Материал и методика. Объектом исследований служили семена карликовых гибридов трех видов—Frisco×Бенгалензе (Dw₁), Местный азербайджанский 41818×Субкерманшахи (Dw₂), Бенгалензе Сурбкерманшахи (Dw₃)—и их родителей. Критерием радиочувствительности служили процент клеток с хромосомными перестройками и митотическая активность клеток корневой меристемы двухдневных проростков. Семена изучаемого материала до облучения приводились к стандартной влажности (12%) Облучение проводилось на рентгеновской установке РУМ-11 дозой 10 кр. Мощность дозы—600 р/мин.

Изучение митотической активности и хромосомных аберраций проводилось на временных давленых препаратах. Корешки длиной 0,7—1.2 см фиксировались в смеси Батталя (5 ч. 96° спирта, 1 ч. хлороформа, 1 ч. ледяной уксусной кислоты, 1 ч. 16% формалина) Окрашивание проводилось реактивом Шиффа. Подсчет хромосомных аберраций велся анафазно-телофазным методом. В каждом из десяти корешков данного родительского сорта или гибрида учитывалось по 50 анафаз-телофаз и по 1000 клеток для определения митотической активности.

Для определечия содержания белковых сульфгидрильных групп (Б-SH) использовался метод Бариета и Зелигмана. Определение оптической плотности Б-SH проводилось цитофотомегрическим методом. Для окрашивания постоянных препаратов использовалась краска прочный синий ББ. После фотографирования препаратов полученные пленки фотометрировались на цитофотометре ИФО-451. Относительная величина оптической плоткости Б-SH для каждой клетки подсчитывалась, исходя из оптических плотностей клеток и межклеточных просгранств.

Результаты и обсуждение. Согласно данным табл. 1, уровень естественного мутирования хромосом в клетках корневой меристемы проростков родительских сортов колеблется в пределах 3,0—4,8%.

Таблица 1

			•	4 0 11 11 4 4
	Тип гибрид-	2.3 (7)	Процент клеток с хромо-	
Сорта и гибриды	ной карли-		контроль (не блучен- ные)	облученные 10 кр
Бенгалензе Frisco		500 500 500	3.4+0,8 4.8+1.0 3.6+0.8	61,0-2.2 59,6+2.3 53.4±2.3
Frisco X Бенгалензе Местный азербайджанский 41818 Субкерманшахи Местный азербайджанский 41818 X		500 500	3,0±0,8 4,8±1,0	68.0 ± 2.1 55.0 ± 2.2
Субкерманшахи Бенгалензе × Субкерманшахи		500 500	2.6 ± 0.7 4.2 ± 0.9	55.0+2.2 52.0+2.3

Из таблицы видно также, что у всех карликовых гибридов (Dw_1 , Dw_2 , Dw_3) он находится в пределах нормы и варьирует от 2,5 до 4,2%.

Отсутствие какой-либо тенденции к повышению уровня естественных хромосомных перестроек у гибридов с генотипом Dwarfness при сравнении с родительскими формами дает основание предположить, что комплементация генов гибридной карликовости не создает в гибридном организме условий, приводящих к этому.

Однако при облучении гибридов и их родителей подобной закономерности не наблюдается. При облучении дозой 10 кр семена карликовых гибридов оказались сравнительно радноустойчивыми, причем летальный гибрид Friscox Бенгалензе (Dw₁) оказался более радиоустойчивым, чем родительские компоненты. Семена же гибридов Местных

азербайджанский 41818 × Субкерманшахи (полулетальная форма Dwarfness) и Бенгалензе × Субкерманшахи (наиболее слабый тип гибридной карликовости) были радиоустойчивыми по сравнению с материнской формой и достоверно не отличались от отцовского сорта. Из данных табл. 1 одновременно следует, что, по сравнению с контролем, облучение дозой 10 кр в среднем на 50% и более увеличивает количество хромосомных аберраций как у сортов, так и у гибридов.

Данные табл. 2 позволяют отметить, чго в облученном варианте у гибридов Dw₁ и Dw₂ имеется тенденция к повышению интенсивности деления клеток корневой меристемы по сравнению с соответствующими, родительскими формами. Так, у гибрида Frisco × Бенгалензе (Dw₁) митотическая активность составляет 8,6%, а у родителей—7,6 и 7,2% соответственно. Эту тенденцию мы замечаем и у гибрида Местный азербайджанский 41818 × Субкерманшахи (Dw₂), митотическая активность которого равна 8,1%, в то время как у родителей она составляет 6,4 и 7,3% соответственно. Гибрид Бенгалензе × Субкерманшахи (Dw₃) по этому показателю не стличается от родительских сортов. Следовательно, у летальной (Dw₁) и полулетальной (Dw₂) форм гибридной карликовости по сравнению с их родителями доза 10 кр оказывает стимулирующий эффект, способствуя более интенсивному делению клеток корневой меристемы.

Митотическая активность клеток корневой меристемы

		<u> </u>		
Сорта и гибриды	Тип гибрид- ной карли- ковости	Число изу- ченных клеток		кая актив- ь. % облученные. 10 кр
Бенгалензе Frisco X Бенгалензе Местный азербайджанский 41818 Субкерманшахи Местный азербайджанский 41818 X	Dwarf 1	10000 10000 10000 10000	6,9+0,3 7,7+0,3 7,0±0,3 6,6+0,2 10,0+0,3	7,2+0.3 7,6±0,3 8,6+0,3 6,4±0,2 7,3+0,3
Субкерманшахи Бенгалензе × Субкерманшахи	Dwarf 2 Dwarf 3	10000	7.2 ± 0.3 6.8 ± 0.2	8.1 ± 0.3 7.2 ± 0.3

Содержание Б-SH в клетках стеблевой меристемы

Таблица 3

Сорта и гибриды	Тип гибридной карликовости	Оптическая плотность Б—SH			
Бенгалензе Frisco × Бенгалензе Местный азербайджанский 41818 Субкерманшахи Местный азербайджанский 41818 × Субкерман- шахи Бенгалензе × Субкерманшахи	Dwarf 1 Dwarf 2 Dwarf 3	27,5±0,98 25,1±1,45 30,5±1,85 25,1±1,39 23,5±0,73 28,0±1,54 26,6±1,59			

Согласно данным табл. 3, у гибридов Dw₁ и Dw₂ наблюдается тенденция к повышению содержания Б-SH по сравнению с их родителями. Оптическая плотность Б-SH у гибрида Dw₃ занимает почти промежуточное положение между его родительскими сортами.

Полученные данные четко показывают, что повышение радиорезистентности у гибридов Dw₁ и Dw₂ коррелирует с уровнем эндогенных Б-SH. Интересно отметить, что у летальной гибридной формы (Dw₁) коррелятивная связь радиорезистентности и содержания Б-SH выраженнее, чем у полулетальной (Dw₂) формы Dwarfness.

По всей вероятности, у растительных организмов, отличающихся выраженной степенью карликовости (Dw_1), мобилизуются внутренние ресурсы, являющиеся адекватной реакцией организма на летальное тействие генотипа.

НИИ земледелия МСХ АрмССР, лаборатория биофизики, лаборатория генетики

Поступило 18.11 1974 г.

Մ. Ե. ՂԱԶԱՐՅԱՆ

8ՈՐԵՆԻ ԳԱՃԱՃ ՀԻԲՐԻԴՆԵՐԻ ՌԱԴԻՈԶԳԱՅՆՈՒԹՅԱՆ ՀԱՄԵՄԱՏԱԿԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ՝ ԿԱԽՎԱԾ ԲՋԻՋՆԵՐՈՒՄ ԵՂԱԾ ԷՆԴՈԳԵՆ ԹԻՈԼՆԵՐԻ ՔԱՆԱԿԻ8

Ulupninia

Աշխատանքի նպատակն է եղել ուսումնասիրել բնական և մոդիֆիկացված (ռենտգենյան ճառագայիների ազդեցությամբ) ռադիոզգայնության փոփոխությունը ցորենի գաձաձ հիբրիդների մոտ՝ կախված բջիջներում եղած էնդոգեն սուլֆիհիդրիլային միացությունների քանակից։ Այս առումով ուսումնասիրվել են $Frisco \times F$ ենզալենզե (Dw_1), Sեղական ադրբեջանական 41818 \times Սուբկերմանշախի (Dw_2) և Fենգալենզե \times Սուբկերմանաշախի (Dw_3) տարբեր տիպերի գաձաձ հիբրիդները և նրանց համապատասխան ծնողական ձևերը։

Պարզվել է, որ քրոմոսոմների բնական խանարումների, ինչպես նաև միթոտիկ ակտիվության մակարդակներով, գաձաձ (Dwarf) հիբրիդների և

ընտրը ծրոմակար ցրթե վիջը բանար ատևերևան ևանևան և հությունը և հարդ

Ապացուցվել է նաև, որ 10 կիլոռենտգեն դոզայով ճառագայթելիս բարձրանում է լնտալ (Dw₁) և կիսալետալ (Dw₂) հիբրիդների սերմերի ռադիո-

շրմացկունությունը իրենց ծնողական ձևերի համեմատությամբ։

Dw1 և Dw2 դաձաձ հիբրիդների սերմերի ռադիոդիմացկունության բարձրացումը կորելատիվ կապի մեջ է գտնվում բջիջներում էնդոզեն սպիտակուցային SH խմբերի մակարդակի հետո

ЛИТЕРАТУРА

- 1 Бабаджанян Г А, Саркисян Н. С. Биологический журнал Армении, 25, 10, 1972.
- 2. Граевский Э. Я., Константинова М. М., Соколова О. М., Тарасенко А. Г. ДАН СССР 164, 2, 441—444, 1965.
- 3. Граевский Э. Я. Сульфгидрильные группы и радиочувствительность. М., 1969.
- 4. Саркисян Н. С., Бабаджанян Г. А. Тр. серин «Пшеница», МСХ АрмССР, НИИЗ, 1, 38—43, 1973.
- 5 Семерджян С П., Нор-Аревян Н. Р. Радиобиология, II, 2, 278—281, 1971.
- 6. Firket J., Comhaire S. Bull. Acad. Med. Beld., 93, 1929.
- 7. Hermsen J. G. Th. Euphytica, 12, 2, 125-129, 1963.
- 8. Hermsen J. G. Th. Euphytica. 16, 1, 1967.
- 9. Morrison J. W. Euphytica, 6, 213-223, 1957.
- 10. Moore K. Euphytica, 18, 2, 190-204, 1969.
- 11. Mc. Millan J. R. Counc. for Sc. and. Ind. Res., Bull. 104, 1937.
- 12. Sparrow A. H. Ann. N. J. Acad. Sci., 51, 1958.
- 13. Stern H. J. Biophys. Biochem. Cytol., 4, 157, 1959.
- 14. Zeven A. C. Euphytica, 19, 1, 33-39, 1970.