T. XXVIII, Nº 4, 1975

УДК 576.8.097.5.547.495.2

3. В. МАРШАВИНА, Е. Н. МАКАРОВА, А. Р. МХИТАРЯН К ВОПРОСУ ОБ УСВОЕНИИ МОЧЕВИНЫ АУКСОТРОФНЫМИ МУТАНТАМИ

Изучалось отношение к мочевине 4-х культур бактерий—продуцентов лизина: М. glutamicus шт. 95, 28, 8 и Brevibacterium шт. 22. Найдено, что ни один из штаммов М. glutamicus не усваивает мочевину как единственный источник азота, Brevibacterium оказался мочевиноусваивающим штаммом, обладающим высокой уреазной активностью, тогда как у всех штаммов М. glutamicus последняя не обнаружена.

Мочевина как источник азога используется большинством микроорганизмов. Чаще всего усвоение ее овязано с наличием уреазы в клетках, активность которой зависит как от факторов внешней среды, так и от физиологического состояния культуры [2, 3, 5]. Отмечается стимулирование уреазной активности специфическим субстратом—мочевиной, а также некоторыми аминокислотами, например аланином [7]. Представляет интерес неуреазный путь использования мочевины микроорганизмами, не имеющими уреазы [4, 6].

Имеются данные по определению уреазной активности и усвоению мочевины ауксотрофными мутантами, в частности М. glutamicus. Несмотря на слабую уреазную активность этой культуры [1], она хорошо усваивает мочевину, что обеспечивает высокий выход лизина [2, 3]. Однако следует отметить, что в этих работах либо использовался посевной материал, приготовленный из клеток, смытых с естественной агаризованной среды, либо синтетические ферментационные среды обогащались естественными субстратами (гидролизат казеина, кукурузный экстракт и др.), что в какой-то мере обеспечивало клетки доступным азотом и способствовало активированию определенных ферментных систем.

Цель нашей работы состояла в изучении усвоения мочевины как основного источника азота ауксотрофными мутантами в чистой синтетической среде с использованием микропосева культуры, исключающего какое-либо внесение дополнительных питательных веществ органической природы.

Материал и методика. Объектом исследования служили ауксотрофные мутантыпродуценты лизина: М. glutamicus, шт. 95, 8, 28 и Brevibacterium, шт. 22.

Опыты проводились в жидкой синтетической среде следующего состава (%): глю-коза—10; КН₂РО₄—0,1; К₂НРО₄—0,03; MgSO₄·7H₂O—0,03; DL-треонин—0,1; DL-метионин—0,04; мел—2; биотин—2 мкг/100; тиамин—20 мкг/100. В качестве основных источников азота использовались сульфат аммония—2, мочевина—1, которые вносились на основе равенства азота. В опытах по использованию мочевины в качестве добавки к сульфату аммония, как основному источнику азота, она вносилась в концентрации одо! М. рН среды в течение всей ферментации поддерживался на уровне 7,2—7,5. Опыты проводились в больших пробирках с 5 мл среды в условиях интенсивной аэрации на качалке при 28°. Через каждые 24 часа брались пробы для определения прироста био-

массы методом нефелометрирования, потребления глюкозы—методом Хагедорн Пенсена и синтезированного лизина—методом высоковольтного электрофореза в муравыню-уксуснокислом буфере, рН 3,1.

Посевной материал представлял собой суточную культуру с рыбного агара, который вносился в виде суспензии, содержащей 0,4—0,6 мг абсолютно сухого вещества био-

массы в 5 мл среды.

Уреазная активность целых клеток определялась следующим образом. Культуры выращивались в вышеуказанной среде в течение 72 часов. Биомасса после центрифугирования несколько раз промывалась дистиллированной водой. После определения количества бномассы она была суспендирована (8 мг абс. сухого вещества/мл) в 25 мл фосфатного буфера, рН 6.5, с мочевиной (10 мг/мл). Инкубация клеточной суспензин длилась 18 час. на качалке. Пробы отбирались через 5 и 18 час., биомасса отцентрифугировалась, а надосадочная жидкость анализировалась на содержание аммиачного азота. В контрольном варианте, при отсутствии клеток, также определялся аммиачный азот методом несслеризации.

Об уреазной активности бесклеточных экстрактов судили по появлению аммиачного азота в инкубационной смеси, содержащей в 1 мл 25 мкмолей фосфатного буфера,

рН 6,5, 50 мкмолей мочевины и 0,5 мл бесклеточного экстракта.

Получение бесклеточного экстракта проводилось следующим образом. Биомасса, пцательно отмытая от культуральной жидкости, разрушалась в стеклянном гомогениваторе с безводным порошком Al_2O_3 и фосфатным буфером в течение 2—3 мин. После центрифугирования в течение 20 мин. при 4000× надосадочная жидкость представляла собой бесклеточный экстракт. В нем определялся общий азот методом микрокьельдаля и умножался на коэффициент 6,25. Опыты проводились в пробирках с герметически закрытыми пробками на качалке в ультратермостате при 37° в течение 2 час. и прерывались добавлением 1 мл 15% трихлоруксусной кислоты. Выпавший осадок белка огщентрифугировался, в надосадочной жидкости определялся аммиачный азот. Уреазная активность выражалась в мг аммиачного азота, образованного за час в пересчете на 1 мг белка.

Результаты и обсуждение. Усвоение мочевины как основного источника азота. Данные, представленные на рис. 1, 2, 3, показывают процесс



Рис. 1. Влияние источника азота на погребление глюкозы у Micrococcus glutamicus, шт. 95, 8, 28 и Brevibacterium, шт. 22.

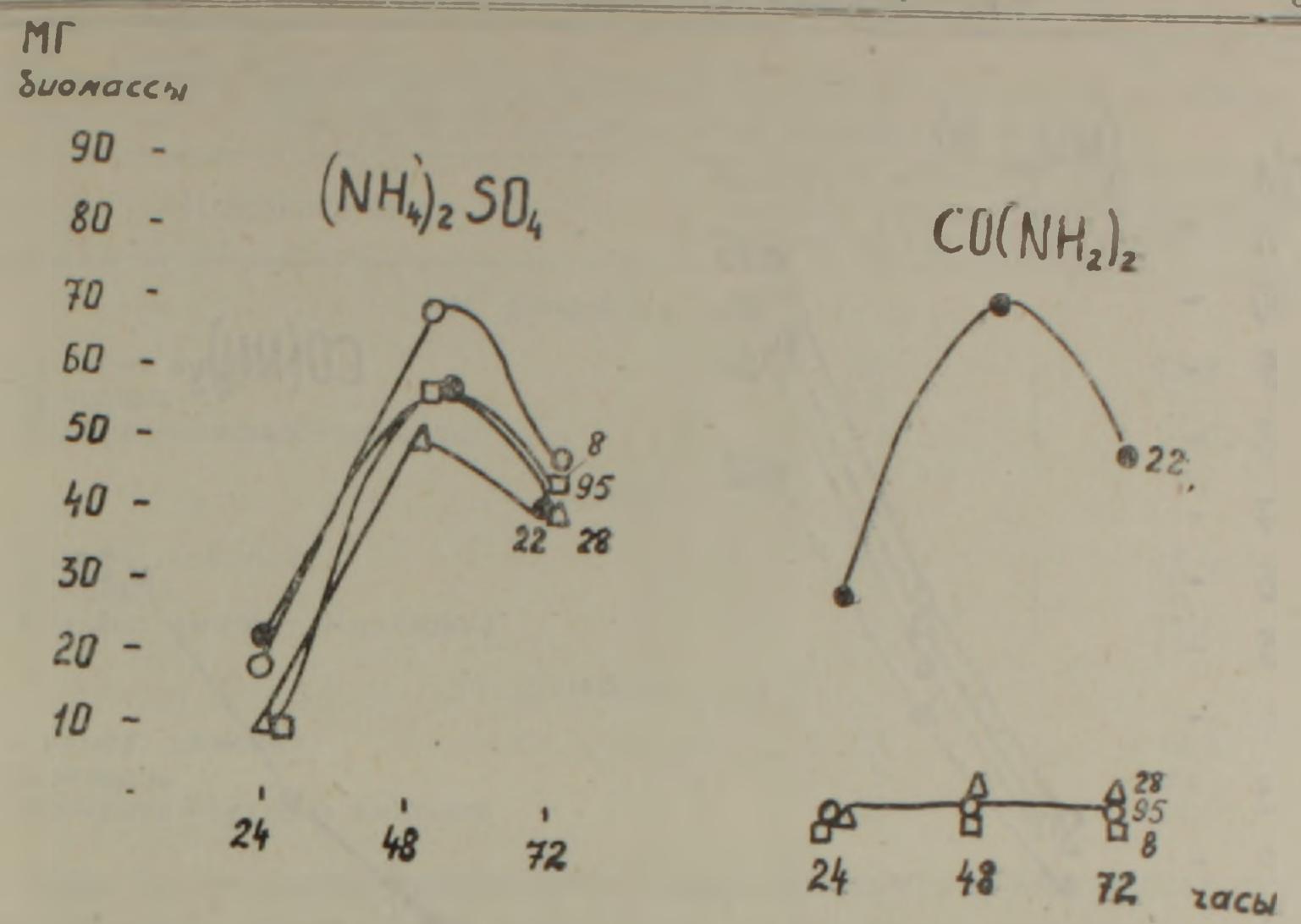


Рис. 2. Влияние источника азота на прирост биомассы у Micrococcus glutamicus, шт. 95, 8, 28 и Brevibacterium, шт. 22.

потребления глюкозы, прирост биомассы и биосинтез лизина у четырех культур при усвоении мочевины и сульфага аммония. В данных условиях опыта усвоение мочевины происходит только у одной культуры Brevibacterium, шт. 22. У этого штамма процессы потребления глюкозы (рис. 1) и прирост биомассы (рис. 2) протекают на более высоком уровне при усвоении этого источника азота, а не сульфата аммония. Однако лизин больше накапливается при усвоении сульфата аммония (рис. 3).

Таблица I Влияние концентрации мочевины на ее усвоение, данные на 72 час инкубации

Варианты	Потребленная глюкоза, мг/10 мл	Прирост бномассы, мг абс. сухого вещества на 10 мл	Синтезированный лизин, гл
	Micrococcus glutam	icus, шт. 95	
Сульфат аммония Мочевина 1 норма Мочевина 3/4 нормы Мочевина 2/4 нормы Мочевина 1/4 нормы	960 250 250 100 0	80.0 4.0 4.0 0	10.0
	Brevibaciteriun	т, шт. 22	
Сульфат аммония Мочевина 3,4 нормы Мочевина 2/4 нормы Мочевина 1/4 пормы	700 798 790 584 475	72,0 82.0 82.0 70.0 55,0	14.7 14.0 14.3 10.0 4.0

У всех мутантов M. glutamicus усвоения мочевины почти не происходит. Правда, потребление глюкозы достигает 30--40% исходного коли-

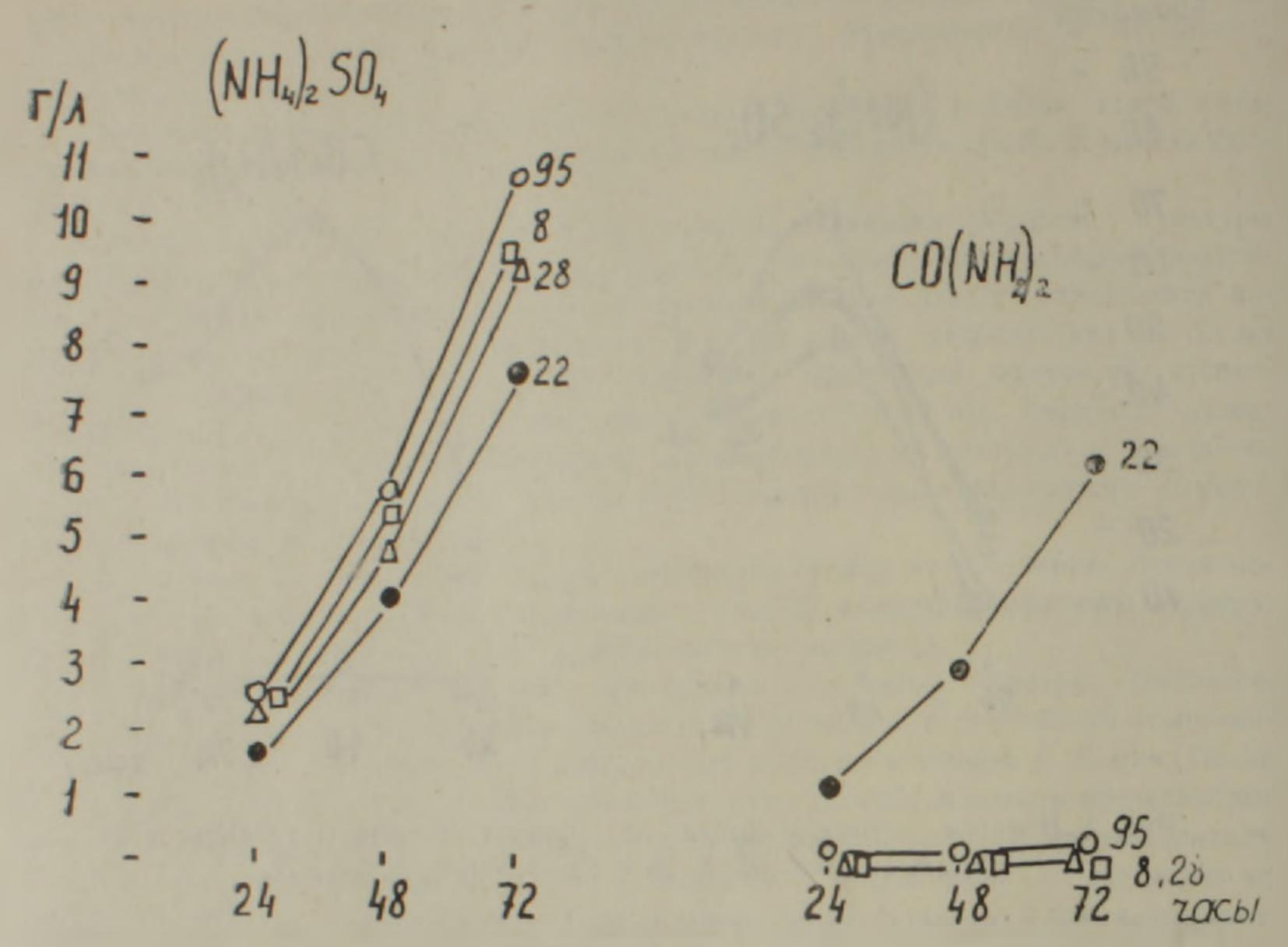


Рис 3. Влияние источника азота на биосинтез лизина у Micrococcus glutamicus, шт. 95, 8, 28 и Brevibacterium, шт 22.

чества, но биомассы накапливается так мало, что она не обеспечивает синтез лизина. Только у одного штамма, 95, лизин обнаружен в виде следов.

Неусвояемость мочевины, как основного источника азота, М. glutamicus можно объяснить либо отсутствием активного фермента уреазы у этих штаммов, либо высокой концентрацией ее, которая может быть токсичной для культур. Для выяснения последнего предположения были поставлены опыты по изысканию оптимальной концентрации мочевины. Были испытаны 4 концентрации: полная норма, 3/4, 2/4 и 1/4 нормы. Данные этих опытов, представленные в табл. 1, свидетельствуют о том, что концентрация мочевины не оказывает влияния на способность культуры усваивать данный источник азота.

Тем не менее оказалось, что для мочевиноусвачвающего штамма Brevibacterium оптимальной концентрацией мочевины можно считать не полную норму, а 75% ее. Дальнейшее снижение концентрации мочевины в среде приводит к угнетению роста культуры и ее биосинтетических процессов.

Влияние сульфата аммония на усвоение мочевины. Для активирования ферментов при потреблении трудноусвояемого источника азота применяется метод прибавления к питательной среде легкоусвояемой формы азота в разных концентрациях. Так, нами была проведена серия опытов с заменой половины нормы мочевины сульфатом аммония. Даниые приведены в табл. 2.

Таблица 2 Влияние смеси сульфата аммония с мочевиной на жизнедеятельность М. glutamicus, шт. 95, 8, 28, данные на 72 час ферментации

Источники азота	Прирост биомассы, мг абс. сухого в-ва/10 мл	Синтезированный лизин, гл
M. glutamicus,	шт. 95	
Сульфат аммония Мочевина Сульфат аммония + мочевина	35 6 40	12.8
M. glutamici	us, шт. 8	18.
Сульфаг аммония Мочевина Сульфат аммония + мочевина	23 3 38	12,9 5 13,8
M. glutamicus	. ш 28	
Сульфат аммония Мочевина Мочевина — сульфат аммония	22 8 35	12,3 сл. 14,0

При такой замене наблюдается заметное стимулирование всех показателей жизнедеятельности клеток (по сравнению с контрольными вариантами). Если при усвоении сульфата аммония выход лизина у всех штаммов в среднем составляет 12,5 г/л, то в этом случае он увеличивается на 10—30% при незначительном увеличении прироста биомассы. Вероятно, при усвоении сульфата аммония из смеси с мочевиной поднимается общий ферментативный фон клеток М. glutamicus, в том числе активируется и уреаза, если этот фермент имеется в наборе клеточных ферментов.

Можно предположить также выработку в клетках адаптивной уреазы, так как в начале роста нужда в источнике азота будет удовлетворяться за счет сульфата аммония, а мочевина может транспортироваться в клетки и способствовать выработке адаптивной уреазы.

Роль мочевины в качестве добавки к сульфату аммония. Результаты исследований представлены в табл. 3.

Табли и а 3 Действие мочевины в концентрации 0,01 М на фоне сульфата аммония как основного источника азота через 72 часа ферментации

Источники азота	Потребленная глюкоза, мг/10 мл	Прирост биомас- сы, мг абс. сухо- го в-ва/10 мл	Синтезированный лизин, г/л
Сульфат аммония — мочевина Сульфат аммония — мочевина Сульфат аммония — мочевина	865 774 603 572	80 66 62 60	15,2 20,1 13,7 15,8

Найдено, что мочевина в концентрации 0,01 М стимулирует процессы жизнедеятельности М. glutamicus, шт. 95 и Brevibacterium, шт. 22. Интересно, что она особенно интенсивно стимулирует жизнедеятельность

М. glutamicus, для которого не является основным источником азота. Возможно, что азот сульфата аммония обеспечивает все процессы, совершаемые в клетке при биосинтезе азотистых компонентов, а азот мочевины включается в какие-то специфические реакции, принимающие участие в процессе биосинтеза лизина, так как в данном случае именно этот процесс и стимулируется, а не прирост биомассы или потребление глюкозы.

В связи с полученными результатами представляет интерес изуче-

ние уреазной активности у ауксотрофных мутантов.

Уреазная активность целых клеток. Результаты, приведенные в табл. 4. говорят о том, что у М. glutamicus, шт. 95, уреазная активность выражена очень слабо. За 18 час. инкубирования этой культуры рас-щепленная мочевина составляет эколо 8% исходной, а образованный аммиачный азот достигает лишь 10,3 мг, что в 10 раз меньше, чем у Brevibacterium.

Таблица 4 Уреазная активность целых клеток в фосфатном буфере с мочевиной (фосфатный буфер, 0.15 M, рН 6,5—25 мл: биомассы—200 мг абс. сухого вещества, продолжительность инкубации 18 час.)

V	Аммизчный азот, мг/25 мл			Уреазная актив- ность мг аммнач- ного азота, обра-
Культуры	HCX.	5 час	18 час	зуемого за 1 час 1 мг абс. сухого в-ва
M. glu!amicus, шт. 95 Brevibacterium, шт. 22	0	4,6	10,3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Уреазная активность бесклеточного экстракта. При определении уреазной активности бесклеточных экстрактов (табл. 5) оказалось, что у M. glutamicus она полностью отсутствует, а у Brevibacterium проявляется довольно сильно.

Уреазная активность бесклеточного экстракта ауксотрофных мутантов (инкубационная смесь 1 мл; 0,15 М фосфатный буфер, рН 6,5—25 мкмоль; мочевина—50 мкмоль; бесклеточный экстракт—0,5 мл; продолжительность инкубации—2 часа)

Культуры	Уреазная активность, мг аммиачного азота, образуемого за 1 час 1 мг белка (азот × 6,25)
M. glutamicus ur. 22	0
Brevibacterium ur. 22	8,5×10 ⁻²

На основании сказанного можно сделать заключение о том, что М. glutamicus, шт. 95, 8, 28, не усваивает мочевину как основной источник азота, но в смеси с сульфатом аммония мочевина стимулирует все процессы жизнедеятельности культур. Низкая концентрация ее на фоне сульфата аммония — основного источника азота—также стимулирует все процессы жизнедеятельности. У М. glutamicus не обнаружено и активного фермента уреазы, тогда как у Brevibacterium этот фермент

очень активен, с чем связано интенсивное усвоение мочевины в качестве основного источника азота.

Институт микробиологии АН АрмССР

Поступило 31.V 1974 г.

2. Վ. ՄԱՐՇԱՎԻՆԱ, Ե. Ն. ՄԱԿԱՐՈՎԱ, Ա. Ռ. ՄԽԻԹԱՐՅԱՆ

ՄԻՉԱՆՅՈՒԹԻ ՅՈՒՐԱՑՄԱՆ ՀԱՐՑԸ ԱՈՒՔՍՈՏՐՈՖ ՄՈՒՏԱՆՏՆԵՐԻ ԿՈՎՄԻՑ

Udhnyhnid

Հողվածում բերված են տվյալներ միզանյութի յուրացման վերաբերյալ՝ որպես ազոտի հիմնական աղբյուրի, ինչպես նաև, որպես լրացուցիչ աղբյուր ամոնիումի սուլֆատի հետ, հոմոսերինի նկատմամբ աուքսոտրոֆ և լիզին արտադրող M. glutamicus շտ. 95, 28, 8 և Brevibacterium շտ. 22 մուշտանտների կողմից։

Ապացուցված է, որ M. glutamicus-ի բոլոր շտամները, որպես հիմնական ազոտի աղբյուր, միզանյութ չեն օգտագործում, բայց ամոնիումի սուլֆատի հետ այն հանդիսանում է ստիմուլ այդ կուլտուրաների կենսագործնեության բոլոր պրոցեսների համար։

M. glutamicus-ի մոտ չի հայտնաբերված ուրեազա ակտիվ ֆերմենտը, երբ Brevibacterium-ի մոտ ուրեաղան շատ ակտիվ է, որի հետ էլ կապված է միզանյութի ինտենսիվ յուրացումը, որպես ազոտի հիմնական աղբյուրի։

ЛИТЕРАТУРА

- 1. Алиханян С. И., Дебабов В. Т., Езстюгов-Бабаев Л. М., Доданов В. Г., Зайцева З. М., Зубарев Т. Н., Легчилина С. И., Миндлин С. З., Тер-Саркисян Э. И. Технологический регламент производства С-лизина. М., 1967.
- 2. Зайцева З. М. Прикладная биохимия и микробнология, 2. 5, 519, 1966.
- 3. Маршавина З. В., Газарян В. Л., Аракелова В. А. Вопросы микробнологии. Физнология микроорганизмов, IV (XIV), 99, 1969.
- 4. Cook A., Boulter D. Phytochemistry, 3, 2, 313, 1964.
- 5. Kaltwasser H., Kramer J., Couger W. Arch. Microbiol, 81 (2):178, 1972.
- 6. Kleczkowski K. Post. Biochem. 17, 3, 463, 1971.
- 7. Mauso R., Maria Martinez. Rev. Patron Biol. anim. 15, 2, 147, 1971.