T. XXVIII, № 2, 1975

УДК 576 8 575 113

М. Г. ОГАНЕСЯН, М. Б. ЧИТЧЯН

МУТАГЕННЫЙ ЭФФЕКТ УФ ЛУЧЕЙ НА СУПРЕССОР-СОДЕРЖАЩИЕ ШТАММЫ ESCHERICHIA COLI

Определены спонтанный и УФ-индуцированный индексы реверсий у штаммов отличающихся по гену супрессорной гРНК Sup C. Установлено, что наличие как амберной гак и охровой аллелей гена Sup C в клетке приводит к увеличению частот индуцированных реверсий к лейцин- и адениниезависимости по сравнению с контрольным штаммом

Гипотеза о возможной роли генов тРНК в мутационном процессе основывается на следующем: известно, что мутации в генах компонентов анпарата белкового синтеза могут привести к переосмысливанию генетической информации. Относительно тРНК, в частности, установлено, что мутации в этих генах могут привнести как качественные, так и количечественные изменения в процесс белкового синтеза [7, 8, 11, 12]. С другой стороны, белковый синтез—это тот узловой барьер, прохождением через который обусловлено становление большинства мутаций.

На основании этих фактов была предложена гипотеза, согласно которой мутации в генах, контролирующих биогенез компонентов аппарата белкового синтеза клетки, вносят существенные коррективы в процесс белкового синтеза [3].

В настоящее время получены первые экспериментальные доказательства роли генов тРНК и рибосом в мутационном процессе. Удалось показать, что выход мутаций у штаммов, отличающихся по генам либо супрессорной тРНК [6], либо рибосом [5], различен.

В настоящей работе изучалась зависимость выхода УФ-индуцированных мутаций от состояния генов супрессорных тРНК в исследуемом штамме.

Материал и методика. Бактернальные штаммы. В работе использовались штаммы Е. coli (характеристика которых приводится в табл. 1), а также—CA266. CA180. CA265. CA167—в качестве пермиссивных хозяев для нонсенс мутантов фага Т4 (получены из Кембриджской коллекции штаммов от С. Бреннера). В качестве хозянна для фагов Т2 п Т4 применяли Е. coli В. Штамм К 12 (д) использовали для получения исходных фаголизатов и тигрования трансдуцирующего фага Р1Кс.

Бактериофаги. Использовалась коллекция нонсенс мутантов фага Т4. описанных ра-

пее [2], дикие фаги Т2 и Т4 и трансдуцирующий фаг РІКс.

Среды. Мясолептонный бульон (МПБ); мясопептонный агар 1,2 и 0,7% (МПА 1,2 и 0,7%). В качестве основной среды (ОС) — минимальная синтетическая среда Мч (1) с добавлением всех необходимых факторов роста в следующих концентрациях (мкг/мл): триптофан 40, треонин—20, аргинин—20, пролин—20, лейцин—20, аденин—10, гнамин—10. Селективные среды (ср1, ср2, ср3, ср4, ср5, ср6) готовили, исключая и ОС соответственно триптофан, треонин, пролин, аргинин, аденин, лейцин.

Таблица

Характеристика штаммов Е. coli, использованных в работе

	Генотип								Фенотип		пп		
Штаммы	thi	trp	thr	pro	arg	leu	ade	Sup C	lac	laa	Su oxpa	Su aw6ep	Источник получения
PA 6021			-					THE PERSON NAMED IN		TI			получен из музея бакте- риальных культур Пи- ститута общей гене- тики
CA167	_		+	+	+		+	-	11	+	+	+	получен от С. Бренера
CA167/15—26	-		+	+	+	+	+		-			+	конвертант и охра - Su амбер, получен у охра Su + штамма СА167
	40		443					100					Оганесяном и А лана- кян
PA6021/12	-	+	+	-	-	-	-	-	-		_		получен нами
PA6021/17			+	1		4		1		-	+	+	получен намн

- + зикая аллель.
- мутантная аллель.

Трансдукция. Шток фага РІКс приготовляли методом агаровых слоев по Адамсу [1] Трансдукцию проводили по методу, предложенному Леноксом [10]. Способность исследуемых культур супрессировать нонсенс мутации бактернофага Т4 проверяли споттестом по Бензеру [1].

Определение выживаемости после УФ облучения. Культуру в логарифмической фаме роста отмывали центрифугированием и ресуспендировали в среде М9. На следующий день ее облучали под лампой ПРК—4 на расстоянии 50 см. Выживаемость культуры после облучения определяли путем высева соответствующих разведений на среду МПА 1,2%.

Определение спонтанных и индуцированных индексов реверсий. Облученную и конрольную культуры центрифугировали при 3000 об/мин, ресуспендировали в среде МПБ (исходя из того, что конечная концентрация клеток в обеих культурах одинакова) и инкубировали при 37°С с постоянной аэрацией, в течение 4 час. для стабилизации мутаций. Затем контрольную и облученную культуры отмывали центрифугированием и высевали на селективные среды (ср3, ср4, ср5, ср6) для выявления спонтанных и индуцированных ревертантов Число ревертантов подсчитывали на 5-ые сутки после посева

Результаты и обсуждение. Для регистрации изменений, вносимых тенами тРНК в мутационный процесс, была выбрана следующая система: сравнение индуцированного индекса реверсий к прототрофпости у штаммов, различающихся аллельным состоянием гена супрессорной тРНК.

В качестве исходного штамма был выбран полиауксотроф РА6021. Штамм РА6021/17, отличающийся от исходного штамма наличием охрового супрессора, был получен путем трансдукционного переноса супрессорного гена Sup C из штамма СА167 в штамм РА6021. При переносе амберного супрессора донором служил дериват штамма СА167—

СА167/15—26, способность которого супрессировать амберную мутацию обусловлена конверсией охрового супрессора в амберный [4].

В обоих случаях в качестве селективного маркера для отбора Su трансдуктантов был выбран Iгр маркер. Тесное сцепление указанных маркеров обеспечило высокую частоту их котрансдукции как при переносе амберной, так и охровой аллелей супрессорного гена. При проверке Su трансдуктантов на сохранение ими маркеров реципиента обнаружилось, что опи сохраняют недостаточность по всем маркерам. за исключением треонина. По-видимому, треонинзависимость у исходного штамма обусловлена амбер мутацией, чувствительной как к амберному, так и к охровому супрессорам (табл. 2). Что же касается супрессирующей способности культур, то оказывается, что, в отличие от tгр трансдуктантов, trp Su грансдуктанты полностью повторяют картину супрессии нонсеис мутаций фага Т4 донорными штаммами.

Таблица 2 Частота совместного перепоса Irp гена с неселективными маркерами

			ктивныи кер trp	Частота котрансдукции неселективных маркеров с trp геном. 0						
Р1 донор	Dans	ученных	проверен-				Sup C		-	
	Реци-	количество полу trp + трансдукта	количество про пых trp + транс тов	arg	leu	thr*	охра	амбер	ade	pro
CA167	PA6021	80	32	0	0	22	22	0	0	0
CA 167, 15.26	PA6021	62	23	0	0	26	0	26	0	0.

Все Su трансдуктанты дновременно ведут себя как thr .

При определении спонтанных индексов реверсии у штамма РА6021 и у Su дериватов этого штамма была выявлена краине низкая частота ревертирования к лейцин- и адениннезависимости у всех культур; спонтанные ревертанты по аргинину и пролину вообще не были обнаружены. Мутагенизация УФ лучами значительно повысила частоты реверсии по лейцину и аденину, что позволило судить о роли супрессорных тРНК имутагенезе. Отсутствие же индуцированных ревертантов по аргинину и пролину, по всей видимости, можно объяснить крайне низкой частотой спонтанных реверсий по указапным маркерам.

Как показали результаты экспериментов, наличие в клетке супрессора не приводит к существенным изменениям в радночувствительности ее (рис. 1). Если присутствие амберного супрессора и снижает несколько радиочувствительность культуры по сравнению с контрольным штаммом, то в случае с охровым супрессором каких-либо существенных различий между трансдуктантами и контролем не обнаруживается.

Иная картина наблюдается при сравнительном анализе индексов уф-индуцированных реверсии у исследуемых культур. Наличие в клетке как амберного, так и охрового супрессоров приводит к увеличению частот реверсий к адении- и лейциниезависимости по сравнению с кои-

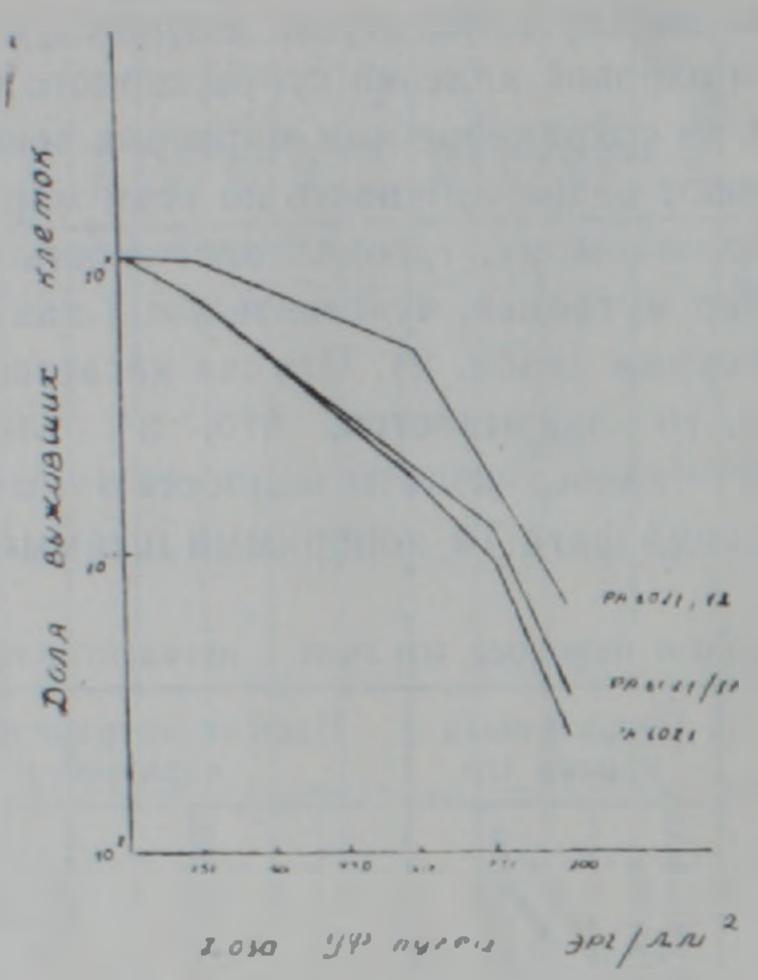


Рис. 1. Кривые 3 Ф инактивации штаммов РА6021, РА6021/12, РА6021/17.

трольным штаммом. Причем увеличение индексов реверсий по аденину оказывается одинаковым в обеих культурах; как в случае с Su амбер так и в случае Su охра мутантами, соотношение долей реверсий трансдуктантов и контрольного штамма составляет 2,7:1 (табл. 3). Что же ка-

Таблица З УФ-индуцированный индекс реверсий к адениннезависимости у штаммов РА6021, РА6021/12 и РА6021/17

Штаммы	Выживае- мость после УФ облуче- ния, %/	Проверено бактерналь- ных клеток	Обнаружено ревертантов	Доля ревер- тантов на 106 клеток	Соотношение до- леи реверсий трансдуктантов и контроля
PA6021	2,5±1,5	20.1-108	94	0,46	1
PA6021/17	2,0-1,5	3,30 109	335	1,30	2.7
PA6021 12	2,5±1.5	1,40 108	120	1,30	2,7

сается лейцинового маркера, то оказывается, что у штамма, несущего охровый супрессор, частота ревертирования к лейциниезависимости несколько выше, по сравнению с Su амбер штаммом: соотношение долей реверсий трансдуктантов и контроля в этом случае соответственно составляет 5,2:1 и 3,7:1 (табл. 4).

Полученные нами данные подтверждают высказанную ранее типотезу относительно роли аппарата белкового синтеза, в частности роли генов тРНК в мутагенезе [3].

УФ-ин туцированный индекс реверсий к лейниннезависимости у штаммов РА6021, РА6021/12 и РА6021/17

Штамм	Выживае- мость после УФ облуче- ния, °,	Проверено бактериаль- ных клеток	Обнаружено ревергантов	Доля ревер- тантов на 106 клеток	Соотношение до- лей реверсии грансдуктантов и контроля		
PA6021	2,5±1,5	2,80-108	397	1,80	1		
PA6021 17	$2,0\pm1.5$	3,00.108	2337	9.40	5.2		
PA6021 12	$2,5\pm1,5$	2,23-10 ⁸	1044	6,70	3.7		

Эти результаты представляют, на наш взгляд, интерес в том аспекте, что если факт участия генов тРНК в неоднозначности считывания генетической информации считается установленным, то вопрос о роли их в мутационном процессе требует экспериментального доказательства. Так. известно, что наличие ноисенс кодонов в информационной РНК приводил к тему, чте трансляция прекращается и образуется неполноценный. короткий пептид. Супрессия, осуществляемая генами тРНК с измененной антикодоновой [12] или какой-либо иной областью молекулы тРНК [9], приводит к восстановлению белкового синтеза, и, соответственно, к переосмысливанию генетической информации. При этом установлено, что как амберные, так и охровые мутации чувствительны к охровым супрессорам, в то время как супрессирующая способность амберных супрессоров ограничивается лишь амберными мутациями. Это свойство супрессорных тРНК вносить коррективы в процесс белкового синтеза не исчерпывается супрессией нонсенсных мутаций. Известно, что определенным образом измененные тРНК супрессируют так называемые мутации со «слвигом рамки» [13]. Зависимость белкового синтеза от состояния генов супрессорных тРНК может нести не только качественный, но и количественный характер. В работе Рассела показано, что три формы одной и той же супрессорной тирозиновой тРНК, отличающиеся по степени модификации основания, примыкающего к антикодону, по-разному поддерживают синтез белка in vitro [8]. Поскольку незначительные изменения в молекуле тРНК, сохраняющей свои супрессорные свойства, отражаются на процессе белкового синтеза, можно было бы ожилать определенных различий в мутагенезе, обусловленных особенностями белкового синтеза, у выбранных нами штаммов, отличающихся аллельным состоянием супрессорного гена Sup C. Как показали результаты экспериментов, различие свойств супрессоров отразилось на мутационном процессе: так у штамма, несущего охровую аллель супрессора, индекс реверсий к лейциннезависимости оказался выше по сравнению с амберной аллелью. Одним из возможных объяснений увеличения частот реверсии к прототрофиости у Su 1 штаммов может быть следующее культуры. несущие супрессор, в отличие от Su- штамма приобретают способность супрессировать нонсенсные мутации, возможно, индуцируемые УФ лучами наряду с реверсиями. С этой точки зрения можно объяснить и наблюдаемую разницу индексов реверсий по лейцину между Su охра и Su амбер + штаммами, как результат неспецифичности охрового супрессора, позволяющей супрессировать наряду с охровыми и амберные мутации. По предварительным данным, указанная причина увеличения индекса реверсии у Su + вариантов не единственная, поскольку при проведении экспериментов в условиях, снимающих указанное преимущество Su + культур, частота индуцируемых реверсий у Su - штамма PA6021 несколько увеличивается (по лейциновому маркеру), но не достигает уровня частот ревертирования Su + дериватов.

Резюмируя настоящую работу, можно сказать, что полученные нами результаты подтверждают необходимость учета генетического потенциала клетки при сценке мутационного процесса; согласно нашим даиным, гены тРНК могут играть определенную роль в сложном процессе мутагенеза, увеличивая частоты индуцированных мутаций.

Филиал Всесою ного научи -исследовательского института генетики и селекции промышленных микроорганизмов, г. Чаренцаван

Поступнао 25.VII 1974 г.

Մ. Գ. ՀՈՎՀԱՆՆԻՍՅԱՆ, Մ. Ք. ՉԻԹՉՅԱՆ

ՈՒԼՏՐԱՄԱՆՈՒՇԱԿԱԳՈՒՅՆ ՃԱՌԱԳԱՅԹՆԵՐԻ ՄՈՒՏԱԳԵՆ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՍՈՒՊՐԵՍՈՐ ՊԱՐՈՒՆԱԿՈՂ ESCHERICHIA COLI ՇՏԱՄՆԵՐԻ ՎՐԱ

Udhnyni

Հետաղոտվել են սպոնտան և ուլտրամանուշակագույն ճառագայթններով ինդուկցված ռևերսիաների ինդեքսները սուպրեսորային Ունթ պարունակող շտամների մոտ։ Ապացուցվել է, որ Sup C գենի ամբեր կամ օխրա ալելների ներկայությունը բջջում ճանգեցնում է ռևերսիաների մուտացիոն ինդերսների մեծացմանը դեպի լելցին և ադենին անկախության՝ ստուգիչ շտամի համեմատությամբ։

Ադենինային մարկերի դեպքում ռևերսիայի ինդեքսի բարձրացումը միևնույնն է ցանկացած ալելի ներկայությամբ և ստուգիչ շտամի ռևերսիայի ինլեյցին անկախության ռևերսիոն ինդեքսր ամբեր ալել կրող շտամի համեմատությամբ ավելի բարձր է։ Ստուգիչ շտամի ռևերսիոն ինդերսի դերաղանցումը

ЛИТЕРАТУРА

1. Адамс М. Бактернофаги М., 1961

2. Майсурян А. Н. Ломовская Н. Д. Молекулярная биология, 2, 389, 1968.

3. Оганесян М. Г. Биологический журнал Армении, 22, 12, 1969

- 4. Оганесян М I Вопросы молекулярно-клеточной биологии и иммунологии. Ереван, 5, 1970.
- 5 Оганесян М. 1 Чахалян А. X Тез. докл. 2-го Всесоюзи. сими. «Молекулярные механизмы генетических процессов мутагенез и репарация», М., 23, 1973.

Оганесян М. Г., Читчян М. Б. Тез. докл. 2-го Всесоюзного симпозиума «Молекулярные механи мы генетических процессов: мутагечез и репарация», М., 58, 1973.

- 7. Anderson K. W., Smith J. D. G. Mol. Biol., 69, 349, 1972.
- 8. Gefter M. L., Russell R. L. G. Mol. Biol., 39, 145, 1969.
- 9. Hirsh D. G. Mol. Biol., 58, 439, 1971.
- 10. Lennox E. S. Virology, 1, 190, 1955.
- 11. Novelli G. D. Sumposium on Protein-Nucleic Acid Interaction, 129, 1969.
- 12. Person S., Osborn M. Proc. Nat. Acad. Sci., 60, 1030, 1968,
- 13. Riddle D. L. and Roth J. R. G. Mol. Blol., 66, 483, 1972.