УДК 612.014

С. К. КАРАПЕТЯН, Р. А. АРУТЮНЯН

РОЛЬ ШЕЙНЫХ СИМПАТИЧЕСКИХ УЗЛОВ В ТЕРМОРЕГУЛЯЦИИ ОРГАНИЗМА

Показано, что одномоментное двухстороннее удаление верхних шейных симпатических узлов приводят к снижению потребления кислорода и теплообразования в среднем на $41^{0}/_{0}$, вершинного обмена—на $34^{0}/_{0}$, а полипноэ—на 17%.

Нарушенная терморегуляторная функция организма обратима и полностью восстанавливается на третьем месяце после симпатэктомки.

В настоящее время в литературе накоплен достаточно большой экспериментальный материал, посвященный изучению роли шейного отдела симпатической нервной системы в регуляции различных физиологических функций организма [1, 2, 4, 5, 11]. Показано, что после удаления верхних шейных симпатических узлов ранее выработанные условные рефлексы исчезают в течение 5—9 месяцев, происходит десинхронизация фоновой электрической активности коры больших полушарий и ряд других изменений в центральной нервной системе.

По данным Никитиной [9], после цервикальной симпатэктемии у кроликов частота дыхания уменьшалась в среднем на 39 в мин, а частота сердца—на 30 ударов в мин.

Бунятян и др. [3] установили, что после одномоментного двухстороннего удаления шейных симпатических узлов в мозге количество цереброзондов снижается от 7,11 до 4,56 мг/г и восстанавливается на 150-й день после симпатэктомии.

В опытах Маркосяна [8] у симпатэктомированных животных свертывание крови резко замедлялось. Урганджян и Бахчиева [15] отмечатот, что у симпатэктомированных собак после одномоментной вентродор зальной гемисекции в течение двух лет не восстанавливаются нарушенные опорно-двигательные функции организма.

Что жасается роли вегетативной нервной системы в терморегуляции организма, то еще в 1920 году О. Шлюзе показал, что перерезка блуждающего нерва не препятствует новышению температуры тела после теплового укола.

В дальнейшем [14] было установлено, что перерезка спинного мозга в грудной части способствует повышению температуры тела после тенлового укола, а перерезка спинного мозга в шейной части препятствует ее повышению.

По данным Маркосяна [8], после удаления шейных и брюшных симпатических узлов температура тела после теплового укола у кошек

не повышается. Уразов [16], изучая роль симпатической нервной системы в процессе химической терморегуляции, показал, что после абдоминальной симпатэктомии снижается потребление кислорода и терморегуляционный топус мышц.

Урганджян [14] отмечает, что удаление брюшных симпатических узлов усиливает теплоотдачу и повышает кожную температуру задних конечностей на 2—3°, а температура передних конечностей при этом снижается на 10—14°. Восстановление температуры передних конечностей происходит в течение 30 дней после симпатэктомии.

Карапетяном и др. [6] показано, что после одномоментной двухсторонней демедулляции надпочечников в пределах термонейтральной зоны потребление кислорода и теплообразование снижается на 15—19%, темрература тела снижается на 0,5°, частота дыхания и количество дыхательного воздуха—на 28,6%. В условиях температуры среды ниже нейтральной зоны уровень вершинного обмена у демедуллированных кроликов снижается на 17,5%, а интенсивность теплообразования—в два раза.

В условиях температуры среды выше нейтральной зоны интенсивпость протекания второй химической терморегуляции снижается на
18.2 %. Все нарушенные терморегуляционные показатели обратимы и
восстанавливаются на 30-й день после демедулляции.

После одномоментной демедулляции обоих надпочечников и односторониего удаления брюшных симпатических депочек нарушенные терморегуляционные показатели восстанавливаются на 39—40-й дин [7], а после полного удаления брюшных симпатических цепочек терморегуляторная функция организма заметно нарушается и восстанавливается до исходного уровня спустя 2 месяца.

В настоящем сообщении приводятся данные по изменению терморегуляционных показателей у кроликов после одномоментного двухстороннего удаления шейных симпатических узлов; эта работа представляет собой продолжение ранее опубликованных работ.

Материал и метоонка. Эксперименты ставились на половезрелых кроликах весом 2.5-3.0 кг. В опытах учитывались: потребление кислорода $(Q^0{}_2)$, теплопродукция, метаболический коэффициент, ректальная и кожная температура, частота дыхания и комичество дыхательного воздуха. $Q^0{}_2$ определялось в респирационной камерс с автоматической подачей кислорода, а теплопродукция—при помощи каллорического эквивалента Броди.

Опыты ставились в двух сериях. В первой серии все параметры изучались в порме, а во второй—после одномоментной двухсторонией цервикальной симпатэктем ин. Во время каждого опыта все параметры определялись при температуре среды 15, 20, 25, 30, 35 и 40°.

Результаты и обсуждение. Потребление кислорода и метаболический коэффициент. Исследования показали, что в пределах термоней гральной зоны (20—30°) у интактных кроликов происходит стандартный обмен, и Q02 составляет в среднем 30,7 мл/кг/мин.

После удаления верхних шейных симпатических узлов в первые два месяца стандартный обмен синжается на 31,4%, и Q02 равияется в сред-

нем 19,7—21,0 мл/кг/мин. Начиная с третьего месяца стандартный обмен постепенно повышается и в конце месяца достигает почти исходного фона. При снижении температуры среды от 20 до 15° у интактных кроликов Q02 повышается на 11,4%. Интенсивность увеличения вершинного обмена на каждый градус снижения температуры среды в этих условиях составила 0,7 мл/кг/мин, а метаболический коэффициент равнялся 1,15.

У симпатэктомированных кроликов в первые два месяца в условиях температуры среды ниже нейтральной зоны Q02 увеличилось всего на 4,5%, а интенсивность вершинного обмена составила 0.46 мл/кг/мин, или на 34% ниже, чем в контроле; метаболический коэффициент равнялся 1,2. В дальнейшем интенсивность химпческой терморегуляции постепенно повышается: через 90 дней после симпатэктомии Q02 от 20,0 мл/кг/мин увеличилось до 25,6 мл/кг/мин, а метаболический коэффициент составил 1,22.

Изучение химической терморегуляции в условиях температуры среды выше нейтральной зоны показало, что если у интактных кроликов при температуре среды 30—35° Q02 снижается на 5,7 мл/кг/мин, то у оперированных—в первые 30 дней этот показатель снижается на 3,7 мл/кг/мин. Через 90 дней интенсивность химической терморегуляции восстанавливается, а Q02 снижается на 4,8 мл/кг/мин. При повышении температуры среды от 35 до 40° как у интактных, так и у симпатэктомированных животных Q02 вновь повышается, что связано с включением в теплообмен механизма полипноэ.

Изменение теплопродукции. Установлено, что в пределах термонейтральной зоны в организме интактных живстных образуется в среднем 0,153 ккал/кг/мин тепла. После экстириации верхних шейных симпатических узлов в первые два месяца теплообразование снижается на 41,2%. В дальнейшем оно повышается и через три месяца составляет в среднем 0,128 ккал/кг/мин.

Изучение динамики теплообразования в условиях ниже нейтральной зоны показало, что если v интактных кроликов на каждый градус снижения температуры среды от 20 до 15° образуется 4.4 гкал/кг/мин гепла, то у симпатэктомированных кроликов в первые 60 дней образуется всего 2,4 гкал/кг/мин тепла.

В условиях температуры среды выше нейтральной зоны у интактных кроликов теплообразование снижается на 20, а у симпатэктомированных в первые 30 дней после операции всего на 12%.

Изменение периферической и центральной температуры тела. Опыты показали, что в первые 30 дней после операции температура тела в термонейтральной зоне у опытных животных снижается на 0,2°, температура кожи в это время повышается на 1,8°. В дальнейшем тепловой баланс организма восстанавливается и в конце второго месяца достигает исходного фона (37,8°).

При изучении сдвигов центральной и периферической температуры в условиях ниже нейтральной зоны выяснилось, что у интактных кроликов ректальная температура повышается на 0,1°, а у симпатэктомирован-

ных, наоборот, снижается на 0,1°, что обусловлено усилением теплоотдачи через сосуды уха. Кожная температура в этот период повышается на 1,6°.

Изменение частоты дыхания и количества дыхательного воздухи. Согласно полученным данным, в первые два месяца после удаления верхних шенных симпатических узлов частота дыхания в пределах термонейтральной зсны снижается от 137 до 92°, а количество дыхательного воздуха-от 0,22 до 0,18 мл/кг. Эти показатели через два месяца улучшаются, и на третьем месяце частота дыхания достигает 110, а количество дыхательного воздуха-0,25 мл/кг. Снижение температуры среды ниже нейтральной зоны на 5° приводит к снижению частоты дыхания как у питактных, так и симпатэктомированных животных в среднем на 25 единиц. Глубина дыхания при этом повышается у интактных животных на 0,07, а у симпатэктомированных—на 0,11 мл/кг. Одновременно выяснилось, что механизм полипноэ как у интактных, так и у симпатэктомированных кроликов включается в процесс физической терморегуляции при температуре среды 35° и достигает максимума при температуре 40°. Однако интенсивность протекания полипноэ у симпатэктомированных кроликов на 17% ниже, чем у интактных. Частота дыхания в период полипноэ у первых составляет 221, а у вторых—266. Результаты статистической обработки экспериментальных данных, полученные у интактных животных, приведены в табл. 1, а у симпатэктомированных—в табл. 2.

Таблица 1 Терморегуляционные показатели у интактных кроликов в термонейтральной зоны зоны

Позазателн	Температура среды								
	15	20-30	35	40°					
Потребление кисло- рода, мл/кг/мин	34,2+1,6 P<0,4	30.7±1,3	25,0±1,5 P<0,05	28,0±1,3 P<0,1					
Количество дыхатель-	0,26+0,01 P<0.2	0,22+0.01	0,12+0,009 P<0,05	0,09±0,009 P<0,05					
Теплопродукция, ккал/кг мин	0.175±0.007 P<0.4	0.155±0,006	0,123+0,007 P<0,05	0.126 ± 0.007 P<0.8					
Частота дыхания	114±2.7 P<0,05	137+2.4	213+4,0 P<0,001	266±2.2 P<0.001					
Температура уха	29,0±0,5 P 0,9	31,2±0,21	35.3 ± 0.12 P < 0.001	36,5±0,14 P<0,001					
Температура тела	38,88±0,03 P<0,01	38,8±0,01	39,4±0,07 P<0,001	40.3±0.02 P<0.001					

Полученные данные позволяют заключить, что в первые два месяца после одномоментного двухстороннего удаления верхних шейных симпатических узлов интенсивность протекания химических терморегуляционных процессов в пределах термонейтральной зоны заметно снижа-

Терморегуляционные показатели у кроликов после удаления верхних шейных симпатических узлов в термонейтральной зоне и в условиях выше и ниже этой зоны

	Температура среды и дни после симпатэктомиц											
Показатели	15			20 30°		35°			40°			
	1-30	31-6)	61-90	1-30	31-60	61-90	1-30	31-60	61-90	130	31-60	61-90
Потребление кислорода, мл/кг/мин	20,0± 1,26 P>0,5	22.0+	25,6± 1,4	19.7 ± 0,77 P<0.01	21,0 ± 0,6	27,6± 1,1	16.0+ 1.2 P 0.001	15,6+	22.8+	18.0± 1,9 P<0,001	20.4±	26.0+
Количество дыхательного воздуха, мл/кг	0,27+ 1,2 P 0,005	0,25± 0,01	0.3+	0.18± 0.03 P<0.4	0,19± 0,01	0,25±	0,09 + 0,000 P<0,01	0,097	0,13 ∓ 0.02	0.08± 0.004 P<0.5	0.08+ 0.003	0,11:
Теплопродукция, ккал/кг/мин	0,103+ 0,03 P<0.5	0,110 ± 0,006	0,120± 0,007	0,09± 0,005 P<0.005	0.10+	0.128+	0.080± 0.002 P 0.001	0.078+	0.109±	0.083± 0.001 P<0.001	0,090±	0,125± 0,08
Частота дыхания	79+ 5,1 P<0,9	80± 4,9	85-+	97+ 2.2 P<0.005	92 + 2.4	110+3,0	168± 8.0 P<0.001	175 <u>+</u> 9,2	168± 8,5	221± 1.5 P<0.001	240± 4,2	250+ 6,4
Температура уха	34,6± 1,2 P<0.2	31.0+	30,2+	33,0 = 0,1 P<0,001	32.5± 0.22	32,6 <u>+</u> 0,12	36.7± 0.17 P<0.001	36.1± 0.17	36,5± 0,17	37.9± 0,21 P<0,001	37,5± 0,11	38,0± 0,1
Температура тела	38.5± 0,009 P<0,9	38.7	38,7± 0,08	38.6± 0.02 P<0.001	38,76± 0,06	0.05	39.8± 0,12 P<0,4	39.6± 0.12	39,2 = 0,11	40,4± 0,1 P<0,9	40,6± 0,17	40.3:

ется, а интенсивность физических терморегуляционных процессов нес-

колько повышается (на 5,8%).

После экстириации верхних шейных симпатических узлов более чем на одну треть уменьшается вершинный обмен, что является следствием снижения теплообразования в условиях ниже нейтральной зоны. В условиях температуры среды выше нейтральной зоны в первые 30 дней после симпатэктомии интенсивность протекания химической терморегуляции снижается в 3 раза, а интенсивность полишноэ—на 17%, что приводит к новышению теплового баланса организма у симпатэктомированных кроликов на 0,6° больше, чем у контрольных (соответственно 0,6 и 1,2).

Нарушения терморегуляционной функции после одномоментного двухстороннего удаления верхних шейных симпатических узлов обратимы, и полное восстановление наступает на третьем месяще после операции.

Механизм возникновения изменений в терморегуляционной функции организма при симпатэктомии сложен и мало изучен, если учитывать тог факт, что гипофиз получает симпатическую иннервацию не только ог гипоталамуса, но и от верхних шейных симпатических узлов [10, 13, 17, 18]. Опираясь на положение Л. А. Орбели, согласно которому симпатическая нервная система оказывает активирующее трофическое влияние на все органы человека и животных, можно предположить, что снижение нитенсивности химической терморегуляции после удаления верхних шейных симпатических узлов является следствием трофического нарушения в гипофизе и снижения уровня синтеза симпатотропина, тиреотропных, адренокортикогропных гормонов и вазопресина, участвующих в химической и физической терморегуляции организма. Одновременно трофическое изменение в гипофизе в свою очередь вызывает апалогичное изменение в гипоталамусе, с чем он связан прямой афферентной и эфферентной иннервацией. Имеется основание утверждать, что указанные изменения в гипоталамусе, где локализованы центры терморегуляции, снижают функцию периферических отделов симпатической нервной системы, в результате чего рефлекторно снижается обмен веществ и теплообразование во многих вегетативных и соматических органах, участвующих в теплообмене организма.

Наши предположения подтверждаются литературными данными [13, 18], согласно которым после удаления верхних шейных симпатических узлов происходит дегенеративное изменение не только в гипофизе, но и в гипоталамусе, а после удаления гипофиза происходит перерождение в верхних шейных симпатических узлах.

Полученные данные являются дальнейшим подтверждением концепции Л. А. Орбели об адаптационно-трофической функции симпатической нервной системы, которая влияет на все органы и ткани, в том числе и на органы, участвующие в теплообмене организма.

Инсти: ут физислогии им. Орбели АН АрмССР

Ս. Կ. ԿԱՐԱՊԵՏՅԱՆ, Ռ. Ս. ՀԱՐՈՒԹՅՈՒՆՅԱՆ

ՊԱՐԱՆՈՑԻ ՍԻՄՊԱԹԻԿ ՆՑԱՐԳԱՅԻՆ ՀԱՆԴՈՒՅՑՆԵՐԻ ԳԵՐԸ ՋԵՐՄԱԿԱՐԳԱՎՈՐՄԱՆ ՊՐՈՑԵՍՈՒՄ

Udhnhnid

Ապացուցվել է, որ պարանոցի վերին սիմպանիկ նյարդային հանդույցների միաժամանակյա, երկկողմանի հեռացման ղեպքում խիստ խախտվում են քիմիական և ֆիզիկական ջերմակարգավորման պրոցեսները։

Միջավայրի ջերմաչնոր գոտու պայմաններում վիրահատված կենդանիների մոտ հիմնական նյութափոխանակությունը և ջերմարտադրությունը իջնում է 31%, իսկ առավելագույն նյութափոխանակությունը՝ 34%,

Զերմաչեզոք գոտուց բարձր ջերմության սյայմաններում պոլիպնոէ-ն ընթանում է ղգալիորեն դանդաղ։

Զերմակարդավորման խախտված ֆունկցիաները վերականգնվում են վիրահատման երրորդ ամսում։

ЛИТЕРАТУРА

- 1. Асратян Э. А. Физиол. журн. СССР, 19, 5, 105, 1935,
- 2. Баклаваджян О. Г. Вегетативная регуляция электрической активности мозга, 2.6, Л., 1967.
- 3. Бунятян Г. Х., Мхеян Э. Е. Сб. Центральные и периферические механизмы вервной деятельности, 130, Ереван, 1966.
- 4. Ван-Тан-ань Физиол. журн. СССР, 46, 8, 957, 1960.
- 5. *Карамян А. И.* Физнол. жури. СССР. 45, 7, 778, 1959.
- 6. Карапетян С. К., Арутюнян Р. А., Варагян К. А. Всесоюзи конф. по физнологии всгетативной нергной системы, 93, Ереван, 1971.
- 7. Карапетян С. К., Арутюнян Р. А. Сб. Всесоюзи. конф по экологической физислогии, Краснодар, 1972.
- 8. Маркосян А. А. Сб. Вопросы физнологии вегетативной нервной системы и мозжечка, 375, Ереван, 1964.
- 9. Накитине Г. М. Жури высшей нервной деятельности, 13, 1, 147, 1963.
- 10. Орбели Л. А., Тонких А. В. Физнол. журн. СССР, 24, 1-2, 248, 1938.
- 11. Солертинская Т. Н. ДАН СССР, 3, 6, 1342, 1956.
- 12. Соколов В. М. Невропатолюгия и почхиатрия, 8, 12, 30, 1939
- 13. Тонких А. В. Гипоталамо-гипофизарная область и регуляция физиологических фучкций организма. 312, М.—Л., 1965.
- 14. Урганджян Т. Г. Возрастные эсобенности компенсаторного восстановления функции. 261, Ерєван, 1973.
- 15. Урганджян Т. Г., Бахчиева З. Н. Вопросы физиологии вегетативной нервчой системы и мозжечка. 535, Ереван, 1964.
- 16. Уразов И. Г. Вестник ЛГУ, 7, 47, 1955.
- 17. Freund H., Strasman R. Arch f. exp. path. and pharm. 69, 12, 1912.
- 18. Smith R. W. J. Endocrinol. 14, 279, 1956.