T. XXVIII, № 1, 1975

КРАТКИЕ НАУЧНЫЕ СООБЩЕНИЯ

УДК 612.826+612.822.3

А Г. КАЗАРЯН, А. А. ГАРИБЯН

ВЛИЯНИЕ ФУНКЦИОНАЛЬНОГО ВЫКЛЮЧЕНИЯ ПУТАМЕНА НА ВЫЗВАННЫЕ КОРКОВЫЕ ПОТЕНЦИАЛЫ

Работами многих исследователей [3, 5, 6, 8] установлено, что электрическая стимуляция путамена приводит к увеличению корковых ответов, вызванных раздражением периферических нервов. В хронических опытах показано, что частичное или полное разрушение этой структуры влечет за собей угнетение общей двигательной активности или полное выпадение ранее выработанных условных рефлексов [2, 4]. Результаты этих исследований дали основание допустить, что путамен также как и паллидум [1] принимает участие не только в управлении движениями, но и является аппаратом, участвующим в механизмах регуляции активности коры больших полушарий головного мозга. С целью дальнейшего исследования этого механизма в настоящей работе изучалось влияние функционального выключения путамена на вызванные корковые погенциалы.

Материал и методика. Опыты проводились на 9-ти половозрелых кошках весом 2.5—3.0 кг. У всех животных под нембуталовым наркозом (40 мг/кг внутрибрющинно) научались вызванные потенциалы на раздражение кожи передней контралатеральной тапы (область предплечья). Раздражение производилось одиночными прямоугольными импульсами тока с амплитудой 15—20 вольт через стальные игольчатые электроды. Стимулирующий ток получался от универсального стимулятора с двумя радиочастотными выхолами. Регистрация вызванных потенциалов осуществлялась в лобной области контралатерального полушария на 5-ти канальной электрофизнологической установке типа УЭФ—ПТ5.

Для выключения путамена применялся 25%-ный раствор хлористого калия Последний вводился в путамен через иглу-канюлю по координатам стереотаксического

Игла-канюля предварительно покрывалась клеем БФ-2 на всем протяжении, кроме кончика. Это делалось для того, чтобы по окончании опыта пропусканием постоянного тока (1 ма. 40 сек) маркировать местонахождение кончика. Она вводилась в путамене той стороны, гле производилось отведение вызванных корковых потенциалов. Запись потенциалов на раздражение кожи передней конечности производилась после введения иглы-канюли. Затем в путамен инъецировался хлористый калий в дозе при и перез каждые 3—10 мгн регистрировались вызванные потенциалы. По окончании опытов кошки забивались, и на серийных срезах определялось местонахождение кончика иглы-канюли в путамене.

одо мл во всех случаях приводило к постепенному угнетению вызван-

ных в коре ответов. Наболее четко это проявлялось на 3-й мин (рис. 1, б). Если до введения в путамен хлористого калия у животных четко регистрировальсь ответы в виде положительного колебания потенциала с амилитудой 120—130 мкв (рис. 1, а), то после его введения уже на 3-й мин амплитуда ответов уменьшалась, достигая 50 мкв (рис. 1, б). На

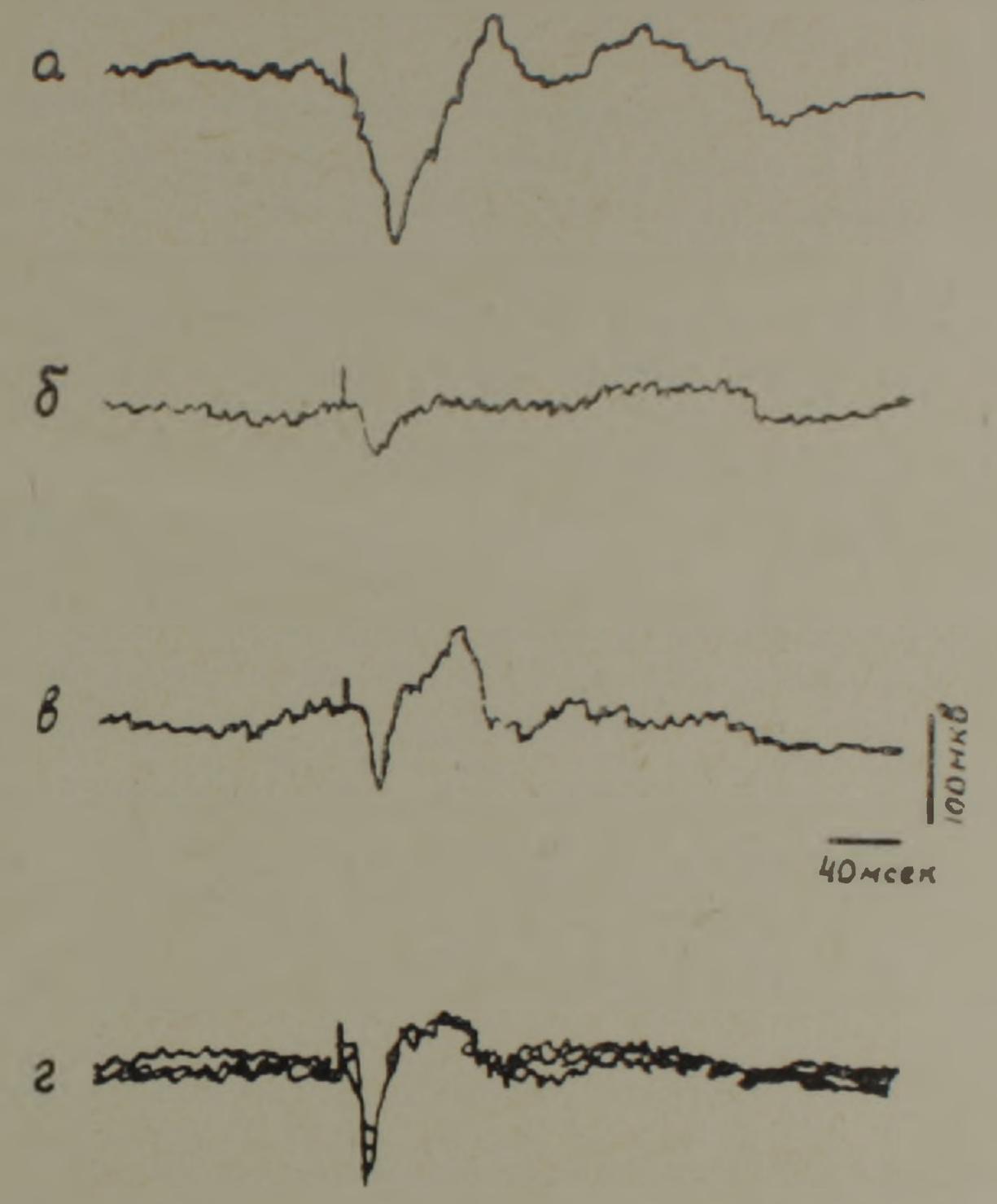


Рис. 1 Влияние КСІ, введенного в путамен, на корковые потенциалы, вызванные раздражением кожи передней контралатеральной лапы

30-й мин амплитуда положительного колебация потенциала понижалась до 30—35 мкв. Наряду с этим полностью исчезало второе положительное колебание потенциала, регистрируемое в норме. На 85-й мин наблюдалось восстановление положительного компонента коркового вызванного потенциала. Без существенных изменений оставались латентные периоды ответных реакций. Гистологический анализ подтвердил нахождение иглы-канюли в путамене.

На основании приведенных данных можно сделать вывод, что путамен действительно играет роль в регуляции корковой активности, и его выключение приводит к резкому подавлению нейронной активности коры головного мозга.

Институт экспераментальной оп догит

Поступнаю 10.VIII 1971 г.

Ա. Գ. ՎԱԶԱՐՑԱՆ, Ա. Ս. ՎԱՐԻՐՑԱՆ

ԿՃԵՊԻ ՖՈՒՆԿՑԻՈՆԱԼ ԱՆՋԱՏՄԱՆ ԱԶԳԵՑՈՒԹՅՈՒՆԸ ԿԵՂԵՎԻ ՊԱՏԱՍԽԱՆՆԵՐԻ ՎՐԱ

U. of the nation of

Կեղևի ակտիվության կարգավորման մեխանիզմներում կձեպի դերի ուսումնասիրության նպատակով կատարվել է վերահիշյալ ստրուկտուրայի ֆունկցիոնալ անջատում ՀՀՀ-ի 25% լուծույթի միջոցով։

Փորձերը ցույց են տվել, որ կձեպի ժամանակավոր անջատումը բոլոր դեպքերում հանգեցնում է կեղևի պատասխանների փոքրացմանը, որը վերականգնվում է 1 ժ. 25 րոպ. ընթացքում։

JIHTEPATYPA

- 1. Гамбарян Л. С. и Гарибян А. А. (Gambarian L. S. y Garibian A. A.) Folia clinica internacional XXII, 11, 3—7, 1972.
- 2. Казарян А. Г. В сб. Мозг и движение. 1973.
- 3. Казарян А. Г., Гарибян А. А., Казарян Г. М., Татевосян Т. Г. и Казарян Л. Г. Бнологический журнал Армении, 26, 9, 1973.
- 4. Кураев Г. А. Журн. высш. нерв. деят. 11, 4, 747—749, 1967.
- 5. Хасабов Г. А. Тез. симп. Базальные ганглин и поведение. 77—78, 1972.
- 6. Dieckmann G. and Sasaki K. Exp. Brain Res., 10, 236-256, 1970.
- 7. Sasaki K., Staunton H. P. and Dieckmann G. Exp. neurology 26, 369-392, 1970.