т. XXVII, № 11, 1974

УДК 576.312.32:595.771

л. А. ЧУБАРЕВА, Э. А. КАЧВОРЯН

К ВОПРОСУ О ХРОМОСОМНОМ ПОЛИМОРФИЗМЕ В ПРИРОДНЫХ ПОПУЛЯЦИЯХ EUSIMULIUM ZAKHARIENSE RUBZ.

Были исследованы с помощью ацето-орсенновой методики кариотипические особенности трех разобщенных полуляций эндемичного для Кавказа вида мошек—Eusimulium zakhariense Rubz. Во всех трех популяциях был обнаружен хромосомный полиморфизм, выраженный в наличии особей с тем или вным количеством микрохромосом в кариотипе. Причем частота встречаемости особей с микрохромосомными кариотипами в популяции выше в гетерогенных условиях, чем в стабильных.

Цитогенетические исследования, проведенные на ряде двукрылых насекомых, показали, что изучение кариотипических особенностей природных популяций дает богатый материал для познания их структуры [1, 4]. Было обнаружено [2, 3, 5, 6], в частности, что многим видам кровососущих мошек, имеющим общирные ареалы и обладающим значительной изменчивостью морфологических признаков, свойственен хромосомный полиморфизм и что кариофонд природных полуляций таких видов представляет собой целый спектр различных кариотипов, большинство из которых гетерозиготно по многочисленным генам. Было показано также, что частота встречаемости особей с хромосомными перестройками или с добавочными микрохромосомами (т-хромосомами) связана с условиями обитания популяции: в гетерогенных условиях. показатели хромосомного полиморфизма выше, чем в гомогенных, и формы с гетерозиготной по инверсиям структурой кариотипа обладают большими адаптационными возможностями, чем формы с гомокариотипами [8, 10—16].

В связи с этим представляло интерес изучение кариотипических особенностей природных популяций мошек, обитающих в горных зонах Кавказа и находящихся под многообразным воздействием экологических факторов (скорость течения и термический режим водоема, высота над ур. м. и др.). В нашу задачу входило кариотипическое исследование разобщенных популяций одного из эндемичных для Кавказа горнородниковых видов мошек—Eusimulium zakhariense Rubz. [7, 9]. Этому виду свойственна значительная изменчивость ряда морфологических признажов личинок, куколок и имаго [9].

Материал и методика. Материалом служили зрелые личинки со сформированными дыхагельными нитями, собранные в разных водоемах АрмССР. Места сборов: ручьи в поселке Цаккар Мартунинского р-на, на окрание игт Вардениса и в с. Гарии Абовянского р-на. Фиксация личинок и куколок производилась на местах сборов, использовалась жидкость Кларка (смесь 3 частей 96° спирта и 1 части ледяной уксусной кисло-

ты). Для окраски хромосом слюнных желез, гонад и ганглиев применялась ацето-орсенновая методика. Исследовались давленые препараты. Для определения длин хромосом были произведены промеры курвиметром зарисованных с помощью рисовального аппарата PA-4 при увеличении микроскопа 90 об. × 10 ок. политенных хромосом из 30 ядер от 15 личинок каждой популяции. Микрофотографии изготовлялись с помощью микрофотонасадки МФН-11. Кариологически изучено всего 245 личинок.

Результаты и обсуждение. В 1966-67 гг. было произведено изучение кариотипического состава природной популяции E. zakhariense Rubz., обитающей вблизи поселка Цаккар Мартунинского р-на на высоте 1975 м над ур. м. Оказалось, что данной популяции свойственен хромосомный полиморфизм, проявляющийся в том, что в исследованной выборке встречались особи как с 2n = 6, так и с кариотипами, в которых обнаружены добавочные сверхкомплектные хромосомы (2n=6+m). Так, в 1966 г. из 70 исследованных личинок 28 было с 2n = 6 + m, а в 1967 г. на 75 особей пришлось 36 с 2n=6+m. Приведенные в табл. 1 данные показывают, что процент особей с микрохромосомными кариотипами здесь достаточно высок-40 и 48%. Обнаружено также, что частота встречаемости особей с микрохромосомами убывает по мере возрастання числа микрохромосом в кариотипе. Характеризуя морфологические особенности политенных хромосом данного вида, следует отметить слабую конъюгацию гомологов, четкую обозначенность центромерных районов, связь с ядрышком хромосомы I и расположение BR в коротком плече хромосомы II —в IIS. Надо добавить, что дистальная область IIIS тоже значительно распуффлена, но конец IIIS отличается от конца IIS своим веерьюбразным видом. У форм с микрохромосомными кариотипами хромосома IV имеет отчетливую дискоидальную структуру и зачастую находится в контакте с ядрышком.

Из проведенного сравнительно-кариологического анализа дискоидальной структуры политенных хромосом у особей с разным количеством микрохромосом путем сличения соответствующих микрофотографических карт видно, что у всех особей E. zakhariense из данной полуляции рисунок дисков гомологичных хромосом сходен. Дискоидальная структура микрохромосом также одинакова. Различия сводятся лишь к размерам хромосомы IV, зависящим от числа конъюгантов (1, 2, 3 или 4 пі-хромосомы имеются в кариотипе), и к их конфигурации: иногда гомологи образуют кольцевидные или полулунные фигуры. Мы предполагаем, что микрохромосомам ядер слюнных желез овойственна высокая функциональная активность, так как их теломерные участки обычно значительно деспирализированы и связаны с ядрышком (рис. la-r). На основании характеристики морфологических особенностей политенных хромосом можно говорить о большом сходстве форм с добавочныини т-хромосомами и без таковых, что обеспечивает им панмиксию в пределах популяции.

Представляло интерес выяснить, каков кариофонд других популяций данного таксона. С этой целью были проанализированы выборки из двух разобщенных популяций: одна из Вардениса (Варденисский р-и, высота 1940 м над ур. м.)—популяция № 2; другая—из Гариц

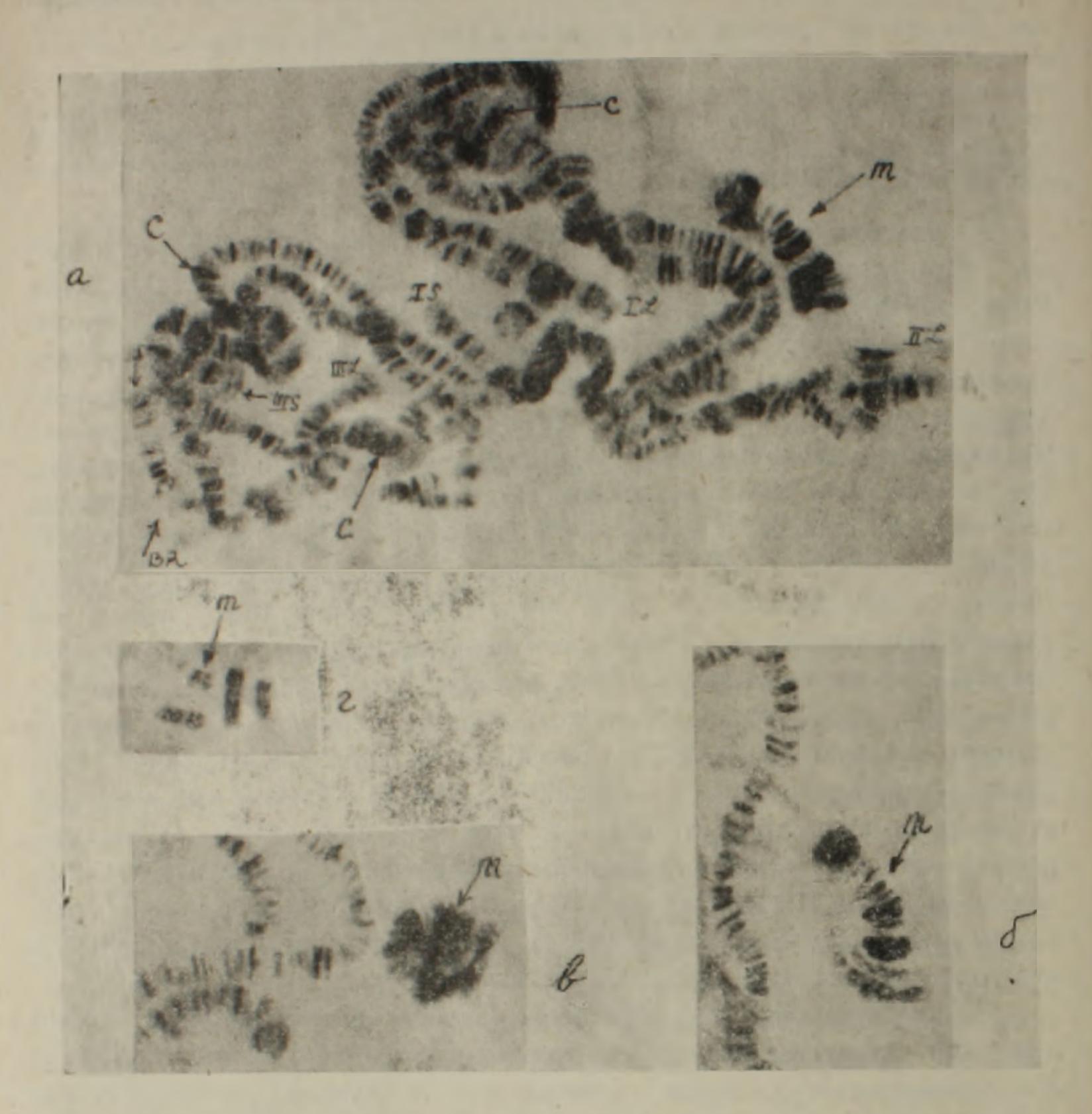


Рис. 1. Кариотипические особенности Eusimulium zakhariense Rubz. (2n=6+m): а—политенные хромосомы в клетке слюнной железы, б, в—различная конфигурация хромосом IV в слюнной железе, г—метафазная пластинка в делящемся сперматогонии той же особи (2n=6+m). Условные обозначения: S—короткое плечо хромосомы, L—длинное плечо хромосомы, N—ядрышковая область, BR—кольцо Бальбиани, С—центромера, при увеличении 90 об. ×7 ок.

(Абовняский р-и, высота 1400 м над ур. м.) — популяция № 3. Результаты меследования приведены в табл. 1. Сравнивая полученные данные, нельзя не заметить, что популяции № 2 и 3 по своему кариотипическому составу менее гетерогенны, чем популяция № 1. Неомотря на то, что величина выборки в них была больше, чем в популяции № 1, процент особей с микрохромосомными кариотипами в них меньше, а формы с 3 и более микрохромосомами не обнаружены совсем. Особи из разных популяций четко различаются также и по морфологическим признакам политенных хромосом: в популяции № 2 отмечена более высокая сте-

Таблица 1 Количество особей из разных популяций с различным числом хромосом диплоидного набора

	Популяция	№ 1 (Цаккар)	Популяция № 2 (Вар-	Популяция № 3 (Гар- ии) 1972 г.	
2n	1966 г.	1967 r.	денис) 1972 г.		
6 0 m 6 1 m 6+2 m 6 3 m 6+4 m	42 15 11 1	39 14 18 3	61	107	
Всего особен	70	75	80	120	
Особен с т	28	3 6	19	13	
о особен с т	40	48	23,75	9,23	

пень политении хромосом и более интенсивное пуффирование отдельных их участков. Это относится прежде всего к определенным зонам хромосомы I, а также к короткому плечу хромосомы III, которые постоянно пуффированы. Приведенные в табл. 2 метрические данные также указывают на определенные межпопуляционные различия у исследованных форм. Разная степень развитости пуффов и разное их расположение отразились на показателях длин хромосом и соотношениях между их плечами. Однако отношение длины каждой хромосомы к суммарной длине хромосом во всех популяциях одинаково.

Из литературных данных известно [2, 3, 6, 16], что структурная изменчивость политенных хромосом мошек проявляется в динамике различного типа инверсии, обладающих той или иной адаптивной ценностью и придающих популяции соответствующий уровень хромосомного полиморфизма. В гетерогенных условиях частота встречаемости особей с хромосомными перестройками больше, чем в стабильных. Степень инверсионного полиморфизма завиоит от разнообразия экологических ниш, в которых популяции обитают—чем больше экологических ниш популяция использует, чем различнее эти ниши по своим условиям, тем больший хромосомный полиморфизм наблюдается у данного вида.

При изучении кариофонда природных популяций украшенной мошки Odagmia ornata Mg. из разных местностей было показано, что в динамике численности особей с микрохромосомными кариотипами существенную роль играют экологические условия. Выявилось, что возрастание процента микрохромосомных кариотипов в общем кариофонде популяции идет параллельно большему загрязнению водоемов и более разнообразному воздействию на популяцию антропогенных факторов [11]. В связи с этим высказано предположение, что микрохромосомы придают популящии способность к большей пластичности. По-видимому, в каждой популящии существует свой уровень отбора особей с микрохромосомными кариотипами, адаптивная ценность которых в разных условиях обитания различна.

Показатели измерении длин хромосом

№ популяции и места сбора	Общая длина хромосомы	IS	IL	IS IL	1/2
Популяция № 1, Цаккар	242,35 ±5,70	116.00 ±3.70	125,30 ±3,41	0.91	0,4187
Популяция № 2, Варденис	332,35 ±10,12	161,76 ±7,06	170,00 ±7,06	0.95	0,4154
Популяция № 3, Гарни	319,41 ±10,41	161,18 ±7,47	157,65 ±7,35	1,00	0,4151

Нам представляется, что эти высказывания можно полностью отнести к объяснению полученных различий между изучавшимися популяциями E. zakhariense. Разный состав карнофонда этих популяций объясняется, очевидно, разными условиями обитания данного таксона. Ручей, населенный популяцией № 1, протекает в зоне большого селения Цаккар, территория которого сильно запрязнена отходами сыроваренного завода; ручей, в котором обитает популяция № 2, расположен на окраине птт Варденис-также в освоенной человеком зоне. Место сбора популяции № 3 — ручен малон протяженности, находящийся далеко от населенных мест в ущелье р. Азат (Абовянский р-н). Терпимость E. zakhariense к загрязненности водоемов с относительно медленным течением, к многообразному воздействию антропогенных факторов связана, по-видимому, с генетическими системами вида, со свойственным ему хромосомным полиморфизмом. Отсюда высокий процент особей с микрохромосомными кариотипами, скоррелированный с большим загрязнением водоемов в Цаккаре и Варденисе, и сравнительно редкая встречаемость форм с микрохромосомами в ручье, протекающем вблизи Гарии.

Хромосомный полиморфизм может проявляться, следовательно, либо в разнообразии содержания в кариофонде популяции гетерозиготных инверсий, либо в динамике численности форм с тем или иным числом сверхкомплектных микрохромосом в кариопипе. Возможно, что микрохромосомы, как и инверсии гетерозиготного типа, несут, сохраняя в себе, какие-то блоки генов, которые имеют адаптивное эначение для популяции, обеспечивая ей существование в конкретных экологических нишах.

Из полученных данных можно прийти к выводу, что хромосомный полиморфизм свойственен не только представителям родов Odagmia End., Simulium Latr. и Tetisimulium Rubz., но и формам другого рода Eusimulium Roub. — виду Е. zakhariense Rubz., и что он представляет собой не такое уж редкое явление в семействе мошек.

Следует отметить также, что в процессе сравнительно-кариологического изучения природных популяций Е. zakhariense среди 120 личинок, относящихся к популяции № 3, была обнаружена 1 триплондная особь, у которой во всех делящихся клетках гонад и ганглиев, а также в ядрах

Таблица 2

В	микронах	H	их	соотношения
---	----------	---	----	-------------

Общая длина хромосомы	IIS	IIL	IIS IIL	11	Общая длина хромосомы	IIIS	IIIL	IIIL	III
170,00 ±4,35		107,65 +2,82		0,2940	166,50 ±4,06		111,76 ±3,00	0,45	0,2880
237,65 ±8.59	_	146,53 十6,70		0,2970	230,00 ±8,41		150,00 +6,24	0,53	0,2875
225,20 ±8,71		137,06 ±6,08		0,3002	210,60 ±8,53		172,94 十7,18		0,2827

Рис. 2. Кариотип триплоидной личинки Eusimulium zakhariense Rubz. а—метафазная пластинка в делящемся сперматогонии, б—политенные хромосомы в клетке слюнной железы. Обозначения см. на рис. 1.

клеток слюшных желез, насчитывалось 9 хромосом, лежащих тремя группами, в каждой из которых было по 3 гомолога (рис. 2а, б). Появление этой триплоидной особи (3n=9) в диплоидной популяции связано, по-видимому, с нарушениями митотических или мейотических процессов в период формирования половых клеток. Такое явление можно рассматривать как один из путей возникновения новых полиплоидных форм мошек.

Зоологический институт АН СССР. Институт зоологии АН АрмССР

Поступило 19.Х 1973 г.

լ. Ա. ՉՈՒԲԱՐԵՎԱ, Է. Ա. ՔԱԶՎՈՐՅԱՆ

ԱՐՅՈՒՆԱԾՈՒԾ ՄԼԱԿՆԵՐԻ ՔՐՈՄՈՍՈՄԱՅԻՆ ՊՈԼԻՄՈՐՖԻԶՄԸ EUSIMULIUM ZAKHARIENSE RUBZ. ԲՆԱԿԱՆ ՀԱՄԱԿԵՑՈՒԹՅՈՒՆՆԵՐՈՒՄ

Udhnhnid

Eusimulium zakhariense Rubz. 3 Տամակեցությունների ուսումնասիրման ժամանակ, որոնք հավաքված էին Մարտունու շրջանի Ծակքար
գյուղից, Վարդենիսից և Աբովյանի շրջանի Գառնի գյուղի շրջակայքից,
հայտնաբերվել են անհատներ միկրոքըոմոսոմային կարիոտիպերով։ Միկրոքրոմոսոմային կարիոտիպի տոկոսային ավելացումը համակեցության
ընդենանուր կարիոֆոնդում կախված է միջավայրի պայմանների փոփոխություններից, որի ֆակտորներից մեկը համարվում է անտրոպոդեն ազդեցությունը։

Բացառված չէ, որ այս տեսակի հարմարվողական հնարավորություններր կապված են կարիոտիպում միկրոքրոմոսոմների առկայության հետ։

ЛИТЕРАТУРА

- 1. Петрова Н. А. Цитология, 15, 8, 1055—1059, 1973.
- 2. Петрухина Т. Е. Генетика, 12, 78-84, 1966.
- 3. Петрухина Т. Е. Цитология. 10, 9, 1148—1154, 1968.
- 4. Петрухина Т. Е. Цитология, 12, 4, 539—547, 1970.
- 5. Петрухина Т. Е. Цитология, 14, 7, 863-867, 1972.
- 6. Полянская Г. Г. и Цапыгина Р. И. Генетика, 4, 5, 70-72, 1968.
- 7. Рубцов И. А. Фауна СССР, 6, 6. Насекомые двукрылые. Мошки, М.—Л., 1956.
- 8. Симоненко В. Д. Генетика, 11, 83-88, 1966.
- 9. Тертерян А. Е. Фауна Армянской ССР, Насекомые двукрылые. Мошки, Ереван. 1968
- 10. Чубарева Л. А. ДАН СССР, 196, 3, 695—697, 1971.
- 11. Чубарева Л. А. и Петрова Н. А. Цитология, 10, 10, 1248—1256, 1968.
- 12. Чубарева Л. А. н Щербаков Е. С. ДАН СССР, 153, 5, 1183—1185, 1963.
- 13. Щербаков Е. С. Генетика, 6, 98-103, 1965.
- 14. Щербаков Е. С. Генетика, 4, 6, 182—184, 1968.
- 15. Щербаков Е. С. н Чубарева Л. А. ДАН СССР, 166, 3, 726—728, 1966.
- 16. Pusternuk J. Canad. J. Zool. 42, 135-153, 1964.