T. XXVI, No 3, 1973

УДК 521.1,15

Т. Г. АРУТЮНЯН

ДИНАМИКА ИЗМЕНЕНИЯ СОДЕРЖАНИЯ ОБЩЕГО АЗОТА И АМИНОКИСЛОТ В РАЗВИВАЮЩЕЙСЯ ГРЕНЕ ТУТОВОГО ШЕЛКОПРЯДА

Исследовалось качественное и количественное содержание структурных и экстрагируемых спиртом «свободных» аминокислот 1, 3, 5, 7 и 9 дня развития грены и вылупивщихся мурашей. Обнаружились глубокие количественные и качественные сдвиги в содержании аминокислот в разных фракциях развивающейся грены. В спирторастворимой фракции грены в течение инкубации идет понижение аминного азота, обнаружено увеличение гистыдина и аланина в спирторастворимой фракции мурашей.

Изучение аминокислотного обмена в развивающейся грене представляет определенный интерес. Несмотря на большую теоретическую и практическую значимость этого вопроса, в литературных источниках весьма ограничены сведения, касающиеся аминокислотного состава грены объема синтеза и распада отдельных аминокислот в период становления следующей фазы развития — гусеницы [1, 2, 5].

В настоящей работе поставлена задача исследовать с точки зрения качественной и количественной характеристики состав структурных л экстрагируемых спиртом «свободных аминокислот» в развивающейся грене тутового шелкопряда.

Материал и методика. Объектом исследовачия служила грена тутового шелкопряда породы Арс-43, возделываемого на шелководческой станции Ин-та земледелия МСХ АрмССР.

Спирторастворимую фракцию грены 1, 3, 5, 7 и 9 дня развития и мурашей получали экстрагированием 75%-ным этиловым спиртом, с гидромодулем (объем), равным

150. Свежую грену переносили в ступку (холодные условия), тщательно растирали в течение 30 мин, постепенно добавляя спирт. Содержимое ступки переносили в колбу с обратным холодильником и ставили в водяную баню на 1 час при температуре 80°С. Полученный гомогенат подвергали центрифугированию при 8000 об/мин в течение 15 мин, после чего декантацией отделяли надосадочную жидкость. Остаток вторично подвергали горячей экстракции в течение 40 мин и счова центрифугировали. Сдив надосадок, осадок промывали два раза 75%-ым спиртом и доводили до воздушно-сухого состояния для анализа. Экстракты объединялись.

Определение общего азота производили микрометодом Кьельдаля, аминиого

[N (NH₂)] —пиридиновым.

Структурные и экстрагируемые этанолом соединения белкового ряда исследовала после кислотного гидролиза 20%-ым НСІ методом хроматографии на бумаге (Filtrak FN 11-немецкая) одномерным писходящим способом. Для разделения аминокислот использовали смесь бутанола, уксусной кислоты и воды (300:60:140). Проявителями служили 0,2%-ый раствор нингидрина в ацетоне и изатия 13, 4]. Идентификацию про-

чэводили либо методом выпадающего и усиливающегося пятна, либо при помощи индивидуальных тестов.

В спиртовых экстрактах развивающейся грены, а также мурашей, выявлено пятно с Ri=0.34, соответствующее глутамину. Это пятно было обнаружено и у других пород тутового щелкопряда (1 em-54, $E_2 VA$). После гидролиза этой фракции оно исчезает, и взамен возрастает количество глутаминовой кислоты.

Результаты и обсуждение. Как видно из табл. 1, в трене тутового шелкопряда во все периоды ее развития до вылупления мурашей количество сухого вещества и общего азота не подвергается значительным

Сухой вес, общий и аминный азот в развивающейся грене тутового шелкопряда, $^{0}/_{0}$ на абс. сухое вещество грены

дипразвития		Сухой в	ec	Общий	азот	Азэт аминный				
		J.e.	-идо	фрак-	-идо	ле	спиртораствори мая фракция			
	грена	остаток пос спиртовой экстракции	спиртораство мая фракция	остаток пос спиртовой ф	спиртораство мая фракция	остаток пос спиртовой экстракции	до гидро-	после гид-		
3 5 7 9 Мураши Скорлуны	40,1 41,0 40,1 42,9 42,9 28,7 99,6	32,4 33,2 33,4 32,7 33,8 10,3	7,7 7,8 6,7 10,2 8,9 18,4	11,12 10,50 11,22 10,02 11,20 12,61 20,04	2,41 2,61 2,49 2,10 2,38 4,15	8,85 8,31 8,72 8,36 8,90 5,57 14,58,	0,586 0,375 0,307 0,303 0,270 0,542	1.156 1,220 1,044 0,652 0,603 1,830		

^{*} Целые скорлупы.

изменениям. Доля сухого вещества остатка грены после спиртовой экстракции почти постоянна и составляет в среднем 80%. После вылупления мурашей указапное соотношение меняется, т. е. количество сухого вещества растворимой фракции (65—70%) превалирует над таковым остатка (30—35%), что объясияется отбросом скорлупок.

Такая же картина наблюдается при сравнении данных по общему азоту спиртонерастворимой и растворимой фракции. Из приведенных данных видно также, что количество аминного азота спиртонерастворимой фракции в течение развития грены дочти постоянно и резко падает носле вылупления мурашей. Подобное явление вновь можно объяснить изменением доли сухих веществ остатка до и после вылупления мурашей.

Из приведенных данных явствует, что при исследовании азотсодержащих соединений цельной грены или ее остатка после спиртовой экстракции изменения не улавливаются

С другой стороны, исследование аминного азота в спирторастворимой фракции показало постепенное падение его во все периоды развития грены и возрастание у мурашей. Эта закономерность наблюдается и после гидролиза этой фракции. При оценке факта спада аминного азота спирторастворимой фракции в течение инкубации грены необходимо обратить внимание на то, что в этой фракции общий азот не подвергается каким-либо заметным изменениям. Это наталкивает на мысль о его переходе в неаминные формы азотсодержащих соединений, которые остаются в той же фракции. По всей видимости, происходит дезаминирование аминокислот с образова-

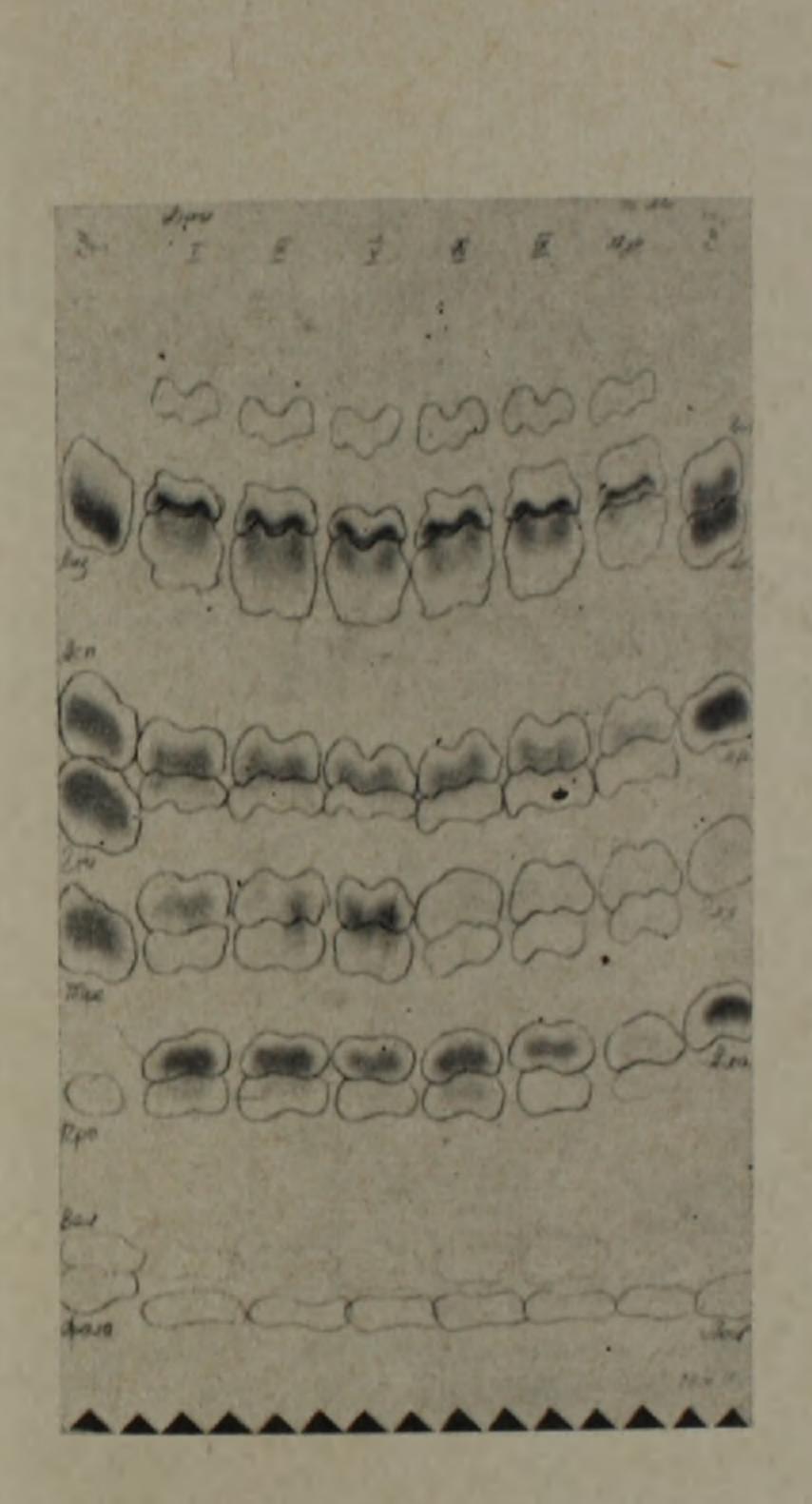


Рис. 1. Рис. 2.

Рис. 1. Аминокислоты спирторастворимой фракции развивающейся грены тутового шелкопряда (после гидролиза).

Рис. 2. Аминокислоты спиртонерастворимой фракции развивающейся грены тутового шелкопряда.

нием кетокислот с целью покрытия энергетических потребностей формирующегося зародыша. С этой точки зрения интересно было рассмотреть, за счет каких аминокислот происходит наблюдаемое понижение аминного азота в течение развития грены.

Приведенные данные роказывают, что в развивающейся грене наблюдаемое понижение аминного азота спирторастворимой фракции идет преимущественно за счет понижения аланина, пролина, глутаминовой кислоты, глицина, серина, аргинина, что свидетельствует о высокой метаболической активности перечисленных аминокислот. Содержание же биологический журнал Армении, XXVI, № 3—3

Таблица 2^{*} Свободные аминокислоты спирторастворимой фракции развивающейся грены тутового шелкопряда, ⁰/₀ на абс. сухое вещество грены

Дни развития	1		3		5		7		9		Мураши	
Аминокислоты	r	N (NH2)	r	N (NH3)	r	N (NH2)	r	N (NH2)	1	N (NH ₃)		N (NH3)
Аргинин Глутамин Аспарагиновая к-та Серин Глиции Глутаминовая к-та Треонин Аланин	0,68 0,13 0,43 0,43 0,93 0,19 0,11	0,048 0,065 0,014 0,066 0,082 0,093 0,023 0,018	0,60 0,61 0,14 0,25 0,35 0,51 0,12 0,07	0,042 0,061 0,015 0,033 0,067 0,051 0,014 0,011	0,52 0,49 0,14 0,19 0,35 0,52	0,015 0,025 0,067 0,052	0,39 0,45 0,16 0,18 0,27 0,39	0,027 4,045 0,018 0,024 0,051 0,039	0,42 0,39	0,011 0,026 0,044 0,038	0,22 1,03 0,24 0,53 0,61 0,88	0,024 0,069 0,116 0,088
Сумма:		0,446		0.324		0,284		0,240		0,222		0,468

Таблица 3 Аминокислоты спирторастворимой фракции развивающейся грены тутового шелкопряда после гидролиза, $^{0}/_{0}$ на аос. сухое вещество грены

Дни развития	1	3	5	7	9	Мураши	
Аминокислоты	N (NH2)	N (NH ₃)	N (NH2)	N (NH ₂)	N (NH ₂)	N (NH ₂)	
Глицин Глутаминовая к-та Треопин Аланин Пролин Лейцин	0,84 1,29 0,116 0,66 0,086 0,40 0,076 1,69 0,169 0,169 0,197 1,01 0,08 0,09	0,42 0,050 0,79 0,126 1,27 — 0,05 0,006	0,64 0,070 0,69 0,062 0,29 0,038 0,11 0,013 1,39 0,139 0,70 0,084 0,61 0,098 1,24 0,004	0,56 0,062 0,76 0.068 0,33 0,043 0,20 0,038 0,52 0,052 0,18 0,022 0,68 0,109 1,09 0,06	0,56 0,062 0,72 0,065 0.31 0,040 0.19 0.036	0,19 0,023 0,58 0,093 0,11 0,012	

треонина не меняется, что говорит о его стносительной метаболической инертности.

Хотя приведенные в табл. 2 и 3 данные в отношении грены и мурашей не сопоставимы (т. к. цифры относительно мурашей выражены в г аминокислот на 100 г их сухого веса без скорлупок), тем не менее они паглядно показывают, что количественное соотношение аминокислог

Таблица 4 Аминокислоты спиргорастворимой фракции развивающейся грены тутового шелкопряда, °/о на абс. сухое вещество грены

Дни развития		1		3		5		7		9		Мураши		Скорлупы	
Аминокислоты	Γ	N (NH3)	r	N (NH ₂)		N (NH ₂)	Γ	N (NH ₂)		N (NH2)	r	N.(NH)		N (NH2)	
Цистеин Лизин Гистидин Аргинин Аспарагиновая к-та Серин Глицин Глицин Глутаминовая к-та Треонин Аланин Пролин Тирозин Валин Фенилаланин Лейцин	12,25 2,89 1,56 3,78 2,18 7,05 6,98 2,54 3,17 3,75 6,25 3,53 4,63	0,14 0,26 0,24 1,34 0,77 0,41 0,30 0,75	14.45 3.06 1,24 3,81 2,43 6,50 6.91 3,07 3,00 4.34 6,16 3,48 3,96	0,34 0,11 0,27 0,27 1,24 0,76 0,49 0,35 0,74 0,28	6,37 6,32 2,69 2,88 4,82 7,83	0,34 0,15 0,28 0,24 1,21 0,70		1,19 0,70 0,42 0,37 0,70 0,25	5,69	0,80 0,63 0,30 0,94	2.42 4,59 4,31	0.27 0.41 0,30	25,90 1,30 0,81 5,38 4,61 15,44 9,92 9,44 9,62 10,36 13,16 7,03 8,14	0,14 0,07 0,38 0,51 2,93 1,09 1,51 0,83 1,58 0,56	
Сумма:		6,65		6.68		7,01		6,33		7,23		5,44		13,35	

спирторастворимой фракции мурашей заметно отличается от такового грены. Так, если после гидролиза спирторастворимой фракции отношение гистидина к лизину у грены равно 1,0—1,5, то у мурашей оно равняется 4,0—4,9.

В следующей серии наших исследований мы задались целью изучить качественные и количественные изменения аминокислот в опирторастворимой фракции развивающейся грены.

Данные, приведенные на рис. 2 и табл. 4, не выявляют более или менее заметных изменений в качественном и количественном содержанин аминокислот. Эта фракция характеризуется высоким содержанием цистенна (12-14%), глицина, глутаминовой кислоты+ треонина и валина (6-8%). Остальные аминокислоты содержатся в умеренных количествах, а количество гистидина, аопарагиновой кислоты + серина и пролина колеблется в пределах 1,5—3,0%. При сравнении аминокислотного состава нерастворимой фракции грены с соответствующей фракцией мурашей отмечается заметное снижение тирозина, глицина, цистеина и увеличение аланина, гистидина. Эти данные, однако, не являются доказательством существенных изменений качественного состава белков при вылуплении мурашей, т. к. перечисленные аминокислоты, кроме гистидина и аланина, соответственно уменьшаются или увеличиваются в скорлупе. Лишь достоверное увеличение гистидина и аланина в опиртонерастворимой фракции мурашей является характерным для данного этапа развития. По-видимому, на данном этапе активируются ферментные системы биосинтеза обеих аминожислот. Итак, полученные нами данные свидетельствуют о том, что наблюдаемая стабильность в содержании азотсодержащих соединений цельной грены или остатка на всех этапах развития не является критерием ранее предполагаемой инертности аминокислотного обмена. При изучении количественного содержания аминокислот в разных фракциях развивающейся грены удается обнаружить глубокие количественные и качественные сдвиги.

Ереванский государственный университет, кафедра биохимии

Поступило 22.1 х 1971 г.

S. Գ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ

ԸՆԴՀԱՆՈՒԲ ԱԶՈՏԻ ԵՎ ԱՄԻՆԱԹԹՈՒՆԵՐԻ ՊԱՐՈՒՆԱԿՈՒԹՅԱՆ ՓՈՓՈԽՈՒԹՅՈՒՆԸ ԹԹԵՆՈՒ ՇԵՐԱՄԻ ՉԱՐԳԱՑՈՂ ԳՐԵՆԱՅՈՒՄ

Udhnhnid

ներկա աշխատանքի նպատակն է եղել 1,3,5,7, և 9 օրական գրենայի և Թրթուրների կառուցվածքային և սպիրտալուծ «ազատ» ամինաթեուների քանակական և որակական ուսումնասիրությունը։

Ստացված տվյալները վկայում են, որ թանակական և որակական տեսա-Կետից գոյություն ունի խորը տեղաշարժ զարգացող գրենայի տարբեր ֆրակցիաների ամինախնվային պարունակունյունում՝ գրենայի սպիրտալուծ ֆրակցիայում ինկութացիայի ընթացքում կատարվում է ամինային աղոտի նվազում զլիսավորապես ի հաշիվ ալանինի, պրոլինի, գլուտամինաննվի, դլիցինի, սևրինի, որը վկայում է այդ ամինաննվի մետաբոլիկ ակտիվունյան մասին։ Իսկ հիստիդինի և ալանինի ավելացումը նորածին նրխուրների ոչ սպիրտալուծ ֆրակցիայում բնորոշ է ղարդացման տվյալ էտապին։

ЛИТЕРАТУРА

- 1. *Бунгова В. Г., Филипович Ю. Б.* Прикладная биохимия и микробнология, 2, 3, 227, 1966.
- 2. Кузнецов Н. Я. Основы физиологии насекомых, П, 1953.
- 3 Хроматография на бумаге (под ред. И. М. Хайса и К. Мацека), М., 1962.
- 4. Hrabetovo E., Typy J. J. Chromat, 3 (2), 199, 1960.
- 5. Sasaki S. T., Watanabe and Koudo J. J. of sericultural science of Japan, 26, 4, 1957.