T. XXVI, № 12, 1973

УДК 537.531:635.652

Г. Г. БАТИКЯН, Дж. С. ЕГИАЗАРЯН

СРАВНИТЕЛЬНОЕ ИЗУЧЕНИЕ ЭФФЕКТА ОДНОКРАТНОГО И ТРЕХКРАТНОГО ПОСЛЕДОВАТЕЛЬНОГО ПРЕДПОСЕВНОГО 7-ОБЛУЧЕНИЯ (Собо) НА ИЗМЕНЧИВОСТЬ ФАСОЛИ ОБЫКНОВЕННОЙ

Изучалось влияние однократного и трехкратного последовательного предпосевного γ -облучения (Co⁶⁰) в дозах 5, 8, 10 кр на изменчивость фасоли. Сравнение частоты и спектров индуцированных мутаций и изучение мутантов в ряду поколений ($M_2 - M_6$) выявило различия в эффективности указанных приемов облучения.

Испытанным методом радиационной селекции является однократное предпосевное облучение семян с последующим отбором в M_2 , M_3 псколениях. Однако ввиду того, что большинство признаков у растений, в том числе и хозяйственно-ценных, контролируется многими генами (т. е. является полигенным) ряд исследователей [1—6] за последние годы начали применять метод многократных последовательных облучений и получили весьма положительные результаты, заключающиеся в повышении выхода мутаций и степени выраженности того или иного признака. Смысл многократных облучений заключается в накоплении мутагенного эффекта путем последовательного индуцировачия мутаций ряда генов, определяющих данный признак.

Нами изучалось влияние однократного и трехкратного последовательного облучения семян фасоли на ее изменчивость.

Материал и методика. Воздушно-сухие семена подолытного сорта, известного под названием Аринджская краснозерная фасоль. были подвергнуты предпосевному ү-облучению в дозах 5, 8, 10 кр при мощности 100 р/м на установке ГУТ-400.

Облучение производилось непосредственно перед посевом. В первый год с целью определения реакции подопытного сорта на разные дозы радиации изучалось M_1 на следующий год часть семян с растений M_1 была высеяна для получения M_2 и изучения частоты и спектра индуцированных изменений. В M_3 устанавливалась природа выявленных изменений и производился отбор мутантов для последующего изучения их в M_4 . M_5 и M_6 поколениях по генетическим, морфо-биологическим и хозяйственным осбенностям.

Вторая часть семян M_1 была повторно подвергнута γ -облучению теми же дозами и затем высеяна для получения поколения от двукратного облучения. На следующий год семена с повторно облученных растений вновь подверглись облучению, после чего были высеяны с целью изучения растений (в ряду поколений) по вышеуказанным показателям.

Результаты и обсуждение. Сравнительный анализ полученных данных выявил нексторые различия в эффекте подопытных полученов обра-

Биологический журнал Армении. XXVII № 12-2

ботки семяч, как в частоте, так и в спектре индуцированных мутаций. Это позволило установить мутабильные дозы в пределах каждого варианта облучения. Обнаруженные изменения можно подвести под следующие категории: хлорофильные мутации; резкие (drastic) мутации, выражавшиеся в основном в изменении окраски семенной кожуры и стерильности; нерезкие мутации, затронувшие те или иные качественные признаки, например высоту растений, урожайность, продолжительность вегетациочного периода.

Выяснилось, что в отношении большинства типов возникших изменений более мутабильной оказалась доза 8 кр, а в отношении определенных признаков—доза 10 кр при однократном облучении, в то время как при трехкратном облучении мутабильной оказалась доза 5 кр. Возникшие изменения при этом были фенотипически схожи с изменениями, индуцированными высокими дозами однократного облучения.

Анализ полученных данных по тесту хлорофильных мутаций (табл. 1) показал следующее. Все дозы при однократном облучении оказались

Таблица I Частота хлорофильных мутаций в M_2 у сорта Аринджская местная при однократном и трехкратном у-облучении

	Доза облуче- ния, кр	Число се- мей М ₂		0 /	Число		
Кратность облучения		всего	мутантных	°/₀ семей с хлорофиль- ными мута- циями	всего	мутантных	9/ ₀ хлоро- фильных мутантов
Однократ- ное	контроль 5 8 10	15 29 30 29	4 2 3	13,4+6,33 6,6+4,56 10,3+5,63	388 397 386 36 5	-7 4 9	1,7±0,64 1,3±0,50 2,4±0,80
Трехкрат- ное	контроль 5 8 10	6 20 3 3	4	20,0 <u>+</u> 8,94	346 773 116 76	20 —	2,5±0,55

примерно в равной степени мутабильными. Так, выход мутаций по семьям в дозе 5 кр составлял 13,4%, в дозе 8 кр—6,6%, а 10 кр—10,3%. Учет хлорофильных мутантов по числу мутантных растений от общего числа изученных выявил примерно такую же картину, при несколько повышенном выходе мутантов в дозе 10 кр.

Анализ данных M_2 от трехкратного облучения показал, что единственной дозой, при которой выявились хлорофильные мутанты, оказалась доза 5 кр, где процент мутантных семей составлял 20,0 от общего числа изученных, а процент мутантных растений был равен 2,5*.

Сравнительная немногочисленность семей и растений при дозах 8, 10 кр является результатом низкой выживаемости растений в этих дозах при трехкратном облучении.

Различия в эффективности обоих способов обработки семян были обнаружены и при сравнении спектров хлорофильных мутаций. Оказалось, что при однократном облучении он включает только два типа—желто-белый (летальный) и желто-зеленый (полулетальный и стерильный), последний является преобладающим.

В спектре хлорофильных мутаций от трехкратного облучения было обнаружено пять типов—белый, желто-белый, желтый, желто-зеленый. Светло-зеленый. Преобладающими здесь являются летальные мутанты с сильным хлорофильным дефектом. Мутанты с желто-зеленой окраскои листьев и в данном случае оказались полулетальными и стерильными, чо с более низкой жизнеспособностью.

Данные анализа частоты мутаций и изменений двух других категорий приведены в табл. 2, из которой видно, что наибольший выход мутаций получен в дозе 8 кр (5,5% от исходного числа изученных растении), несколько ниже процент мутаций при дозе 10 кр (4,9%), а доза 5 кр дала всего 1% мутантных растений.

Фенотипически сходные мутации при трехкратном облучении были индуцированы в дозе 5 кр, они составляли 0,9% от исходного числа изученных растений.

Таблица " Частота возникновения изменений в M_2 и 0 мутантов по унаследованным и возникшим в M_3 мутациям от исходного числа проанализированных растений

Кратность облучения	Доза облу- чения, кр	Чис	оло растен	ий Ма	Число му-	Общее чис- ло мутантов 0/0 мутан	
		всего	изменен- ных	мутант- ных		по данным М ₃	70 MYTANTOB
Однократ- ное	контроль 5 8 10	283 293 289 301	3 10 12 15	1 3 8 8	1 - 8 7	2 3 16 15	0,7+0,48 1,0+0,58 5,5+1,34 4,9+1,24
Трехкрат	контроль 5 8 10	135 318 51 31	1 18 —	2	- 1 -	3	0.9+0.52

Типы изменений, полученных при однократном и трехкратном облучении, находились в разных соотношениях. При этом выщепление мутантов почти в равной мере наблюдалось в M_2 и M_3 , даже в M_4 от однократного облучения был обнаружен небольшой процент морфологических мутаций. При трехкратном облучении выщепление мутантов наблюдалось в основном в M_2 , всего лишь один случай зарегистрирован в M_3 .

Изучение спектров возникших мутаций показало, что нерезкие изменения возникают больше в дозе 5 кр, в то время как высокие дозы индуцируют резко выраженные изменения, такие, как мутации стерильности, изменения окраски семенной кожуры. Мутантов последнего типа оказалось больше в дозе 8 кр, при их значительном фенотипическом

Таблица 3 Сравнительная характеристика фенотипически тождественных мутантов от однократного и трехкратного облучения по некоторым признакам в ряду поколений

Однократ	Трехкратное облучение					
M ₃ (М ₃ (1970 г.)					
Окраска семенной кожу- ры мутанта	высота растений, см	урожай 60- 60в с ра- стения, шт.	вегетацион- ный пе- риод, дни	высота растений, см	урожай бо- бов с расте- ния, шт.	вегетацио- ный пе- риод, дни
Контроль (красная) Светло-коричневая	51,8±1,8 61,0±2,2	35±2,9 77±8,5	64 65	109±4,0 120±5,5	37,5十3,7 23,6上10,3	79 110
Телесная с коричневыми полосами Горчичная	58,3+1,4 47,5+2,6	60±11.1 37±3.8	66	149 + 8,5	74,4±8,9	97
M ₄ —	$M_4 - 1971$ г.					
Контроль (красная) Светло-коричневая	52,5±1,7 57,5±6,3	54±2,2 65 + 6,3		76±3,4 131,8±2,4	27±3,7 27,6±3,4	95 113
Телесная с коричневыми полосами Горчичная	98±4,5 142±18,8	60,9 +4 ,1 60 + 1,7	_	159±2.9 178±3.4	$51\pm6,1$ $38,1\pm7,5$	119 120
M ₅ —	М ₅ — 1972 г.					
Контроль (красная) Светло-коричневая	73,5±0,5 87±2,3	46±5,0 53±3,0	80 110	109,7±2,6 118±16,5	36,6±3,4 77,0±18,3	79 92
Телесная с коричневыми полосами Горчичная	92±2,8 80±1,5	58±7,3 35±7,6	100 89	132±9.0 185,8±7,3	50±10.0 50±7.3	95 97

разнообразии (светло-коричневые, телесные со светло-коричневыми полосами, горчичные, желто-горчичные, черные). В дозе 10 кр обнаружено два типа мутантов—с горчичной и темно-фиолетовой с мозаичнопестрым рисунком, окраской семенной кожуры.

Фенотипически сходные по окраске семенной кожуры мутации в пределах трех типов (светло-коричневые, телесные с горчичными полосами и горчичные) были индуцированы в дозе 5 кр при трехкратном облучении.

Сравнивая полученные данные, можно сказать, что доза 5 кр при трехкратном облучении как бы приобретает способность индуцировать мутации, возникающие при однократном облучении более высокими дозами (8, 10 кр), что, очевидно, является результатом накапливающего эффекта трехкратного облучения.

В спектре индуцированных мутаций особого внимания заслуживают мутанты с измененной окраской семенной кожуры, т. к. окраска растений, в частности семян, является одним из наиболее ярко выраженных

признаков, позволяющих разграничить отдельные морфологические формы и определить генетическую изменчивость отдельных родов и видов. Изучение поведения этой категории мутантов в ряду поколений позволило установить, что все полученные типы окрасок гетерозиготны, т. к. они дают расщепление в последующих поколениях, при этом одни формы больше, другие меньше. Наибольшее расщепление нами наблюдалось в M_4 , где был обнаружен большой полиморфизм по окраске, форме и величине семян. В M_5 расшепление несколько ослабевает, а M_6 характеризуется более высокой фенотипической однородностью. Примерно такая же закономерность установлена и у однотипных мутантов от трехкратного облучения.

Другой особенностью мутантов с измененной окраской кежуры является то, что некоторые из них обладают сопутствующими изменениями, т. е. у них установлено явление плейотропии.

Характер плейотропии у фенотипически тождественных мутантов от однократного и трехкратного облучения почти сходен, однако у последних некоторые сопутствующие признаки выражены несколько сильнее.

Мутанты со светло-коричневой окраской, телесной с коричневыми полосами и горчичной характеризуются высокими показателями ряда признаков: высота растений, структура урожая, размеры бобов и листь ев (табл. 3, рис. 1, 2, а, б).

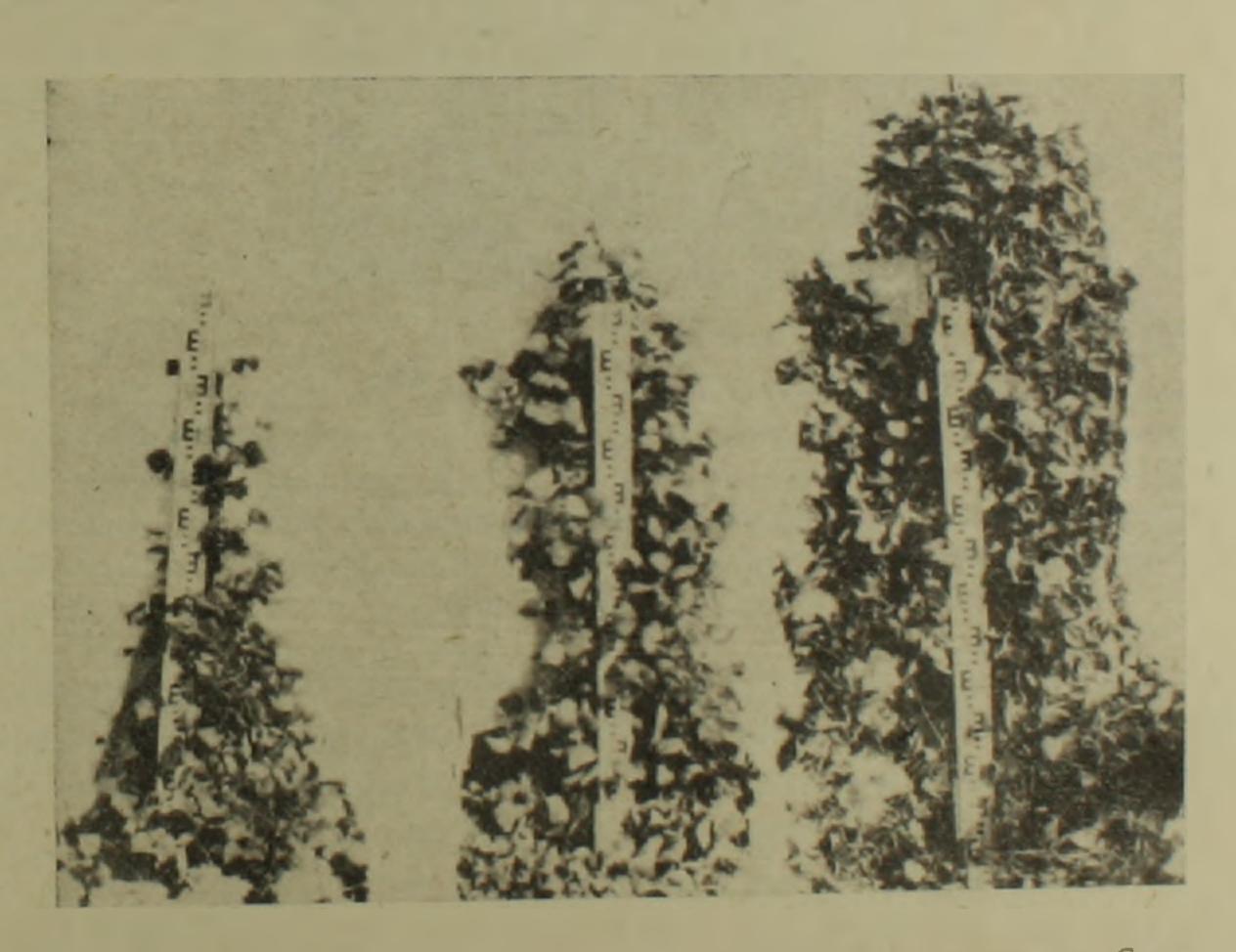


Рис. 1. Общий вид подопытных растений в период плодоношения. Слева направо: контроль (сорт Аринджская класнозерная), фенотипически тождественные по окраске семенной кожуры (горчичная) мутанты м от однократного и трехкратного облучения.

Обобщая полученные данные, можно сказать, что мутабильные дозы при однократном и трехкратном облучении различны: 8 и частично

10 кр мутабильны при однократном облучении, а 5 кр—при трехкратном. Эффект высоких доз при однократном облучении (8, 10 кр) сходен с эффектом низкой дозы (5 кр) при трехкратном.

Рис. 2. Бобы и семена фенотипически тождественных по окраске семенной кожуры мутантов. Слева направо: а) контроль, мутанты со светло-коричневой окраской кожуры от однократного и трехкратного облучения; б) контроль, мутанты с телесной со светло-коричневыми полосами окраской кожуры от однократного и трехкратного облучения.

Как при однократном, так и трехкратном облучении обнаружена плейотропия, в частности выражающаяся в повышении показателей количественных признаков; при этом степень выраженности некоторых из них сильнее у мутантов от трехкратного облучения.

Ереванский государственный университет, кафедра генетики и цитологии

Поступило 12.VII 1973 г.

2. Գ. ՔԱՏԻԿՅԱՆ, Ջ. Ս. ԵՂԻԱԶԱՐՅԱՆ

ՆԱԽԱՑԱՆՔԱՅԻՆ ՄԻԱՆՎԱԳ ԵՎ ՀԱՋՈՐԳԱԿԱՆ ԵՌԱՆՎԱԳ ₇₋ՃԱ<mark>ՌԱԳԱՅԹՄԱՆ ԱԶԴԵՑՈՒԹՅԱՆ Հ</mark>ԱՄԵՄԱՏԱԿԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ ՍՈՎՈՐԱԿԱՆ ԼՈԲՈՒ ՓՈՓՈԽԱԿԱՆՈՒԹՅԱՆ ՎՐԱ

Udhnhnid

Աշխատանքի նպատակն է նղել ուսումնասիրել միանվագ և եռանվագ Հաջորդական՝ 5, 8, 10 կու դողանելով (100 ռ/բ Հզորությամբ) "-Հառագայթների (Co⁶⁰) ազդեցությունը սովորական լոբու փոփոխականության վրա։

Նշված եղանակներով մակածված մուտացիաների հաձախականությունը, սպեկտրների համեմատությունը, ինչպես նաև մի շարք (M₂—M₅) սերունդնեշրում ստացված մուտանտների ուսումնասիրությունը պարզեցին, որ միանվագ և եռանվադ ճառագայթման մուտաբիլ դոզաները տարբեր են, ըստ որում միանվադ ճառագայթման բարձր (8, 10 կռ) և եռանվագ ճառագայթման ցածր (5 կռ) դոզաների ազդեցության ժամանակ դիտվել են նույնատիսյարդյունջներ։

Ճառագայթման երկու ձևերի դեպքում էլ բացահայտված է պլեոտրոպիայի երևույթը։ Սերմնամաշկի գույնի փոփոխություն կրող մուտանտների մոտ վերջինս արտահայտվում է մի շարք բանակական հատկանիշների ցուղանիշների բարձրացմամբ։

Որոշ դեպքերում այդ փոփոխություններն ավելի ուժեղ են արտահայտվում եռանվագ Ճառագայթմամբ մակածված մուտանտների մոտ։

JIHTEPATYPA

- 1. Володин В. Г. В ки. Экспериментальный мутагенез у сельскохозяйственных растеный и его использование в селекции. М., 1966.
- 2. Володин В. Г., Гордей И. А., Гордей Г. М. Весц. АН БССР, сер. біял. навук, 5, 1970.
- 3. Щапова А. И., Будашкина Е. Б. В кн. Экспериментальный мутагенез у сельскохозянственных растений и его использование в селекции. М., 1966.
- 4. Scholz F. Z. Pflanzenzücht, 1960.
- 5. Hoffman W., Walter Z. Pflanzenzücht, 45, H. 3/4, 1961.
- 6. Caldecott R. S., Horth D. T. Mutation and Plant Breeding NAR-NRC, 891, 1961.