T. XXV, № 9, 1972

УДК 576.3

Е. Ф. ПАВЛОВ, В. Э. ЛЕОНОВИЧ

НАСЛЕДСТВЕННО ДЕТЕРМИНИРОВАННОЕ КОЛИЧЕСТВО ЯДРЫШЕК В ЯДРАХ КУЛЬТУРНЫХ КЛЕТОК КУР, ЦЕСАРОК И ИХ ГИБРИДОВ

Одним из существенно важных органоидов клетки является ядрышко. Его морфология и генезис теснейшим образом связываются с хромосомами [2], а функциональное значение определяется участием в синтезе рибосомальной РНК [4, 5]. Последнее обстоятельство позволило ряду авторов связать интенсивность белковых синтезов, протекающих в клетках, с размерами и числом ядрышек, подсчеты которых в различных тканях человека показали, что их количество варьирует в пределах 1—8 в зависимости от тканевой принадлежности клеток [8]. Существенные вариации числа были обнаружены и у животных. По Вильсону [1], эти колебания в овоцитах различных видов отмечаются в пределах от нескольких сотен до 1—2 ядрышек на ядро.

Нетрудно допустить, что подобного рода колебания отражают уровни белковых синтезов в клетках с различным обменом и функциональным назначением.

Наличие относительной упорядоченности в изменении числа ядрышек в ядрах клеток различного функционального назначения, относящихся к тканям организмов, принадлежащих к самым разнообразным таксономическим уровням [7] и, следовательно, обладающих отличающимися белковыми метаболизмами, позволяет поставить вопрос о неполноте представлений, выводящих количественную динамику ядрышек из функциональной напряженности белкового обмена в клетках. Дополнением к этому заключению могло бы явиться представление о наследственной детерминированности объема ядрышкового материала в клетках различного происхождения. Однако прямые наблюдения за числом ядрышек, позволяющие поставить их численную динамику в зависимость от наследственных детерминант, в литературе отсутствуют. Единственное исключение представляет собой сообщение Элсдейла с соавторами [6], который в лабораторных условиях у гладкой шпорцевой лягушки Xenopus laevis получил и размножил мутантную форму с одним ядрышком, в то время как у исходной формы в ядрах клеток в большинстве случаев содержится два ядрышка. Дальнейшие наблюдения показали, что при скрещивании мутантной и исходной форм признак одноядрышковости хорошо менделирует, а количество ядрышек в рассматриваемом случае носит наследственно обусловленный характер.

Работая на протяжении ряда лет с тканевыми культурами почек птиц, мы обратили внимание на постоянно повторяющуюся зависимость между видовой принадлежностью клеток и числом ядрышек в их ядрах, т. е. подтвердили данные, упоминавшиеся выше [7].

В нашем распоряжении были культуры, полученные из почечного эпителия кур, цесарок и их гибридов, достигших 1,5—2-летнего возраста. Для культивирования использовалась стандартная среда с 0,5% гидролизата лактальбумина в растворе Хенкса производства Московского института вирусных препаратов. Добавлялась сыворотка крови крупного рогатого скота в количестве 10%. Культуры, предназначенные для подсчета ядрышек, промывались в физиологическом растворе, фиксировались в смеси Буэна и окрашивались первоначально пиронином или гематоксилином Маера с подкрашиванием эозином. Позднее, когда были получены идентичные результаты при применении обеих окрасок мы ограничились только окраской гематоксилин-эозин (более подробно методические вопросы описаны одним из авторов [3]). Подсчет числа ядрышек в ядрах клеток кур, цесарок и их гибридов проводился в двух сериях опытов, каждая из которых включала по три птицы в группе идентичного видового состава. Всего под опытом было 18 голов птиц. Возраст культур, в которых проводились подсчеты ядрышек, в обеих сериях соответствовал третьему, шестому и десятому дням культивирования. Всего из каждого возраста обрабатывалось несколько более шестисот клеток, морфологически относимых к почечному эпителию. Для получения необходимого числа клеток из посева, индивидуального для почек каждой птицы, в соответственные дни отбиралось по одному стеклу с монослоем, так что итоговый результат подсчета ядрышек для каждого возраста культуры представляет собой усредненные данные по клеткам, полученные от шести особей.

Результаты подсчетов представлены в табл. 1.

Таблица 1 Количество ядрышек в ядрах клеток кур, цесарок и их гибридов

Дин куль- тивирова- ния	Курица				Цесарка				Гибрид			
	одти 1	2 ялра	3 п больше	HTOFO	1 ядро	2 ялра	3 и больше	всего	1 ялро	9 ялра	3 и больше	IITOFO
VI X	217 242 296	398 373 322	7 4 5	622 619 623	520 472 504	100 142 138	5 14 5	625 628 647	550 532 582	72 76 49	2 8 1	624 616 632

Из таблицы видно, что весь представленный материал распадается на две группы. Одну из них составляют ядра клеток кур, в которых соотношение между одно- и двуядрышковыми клетками характеризуется некоторым преобладанием двуядрышкового варианта. Вторая группа слатается из клеточного материала, полученного от цесарок и курино-цесариных гибридов. В ней доминирующее положение принадлежит клеткам, ядра которых содержат по одному ядрышку. Указанное различие настолько очевидно, что легко улавливается при визуальном просмотре

препаратов (рис. 1 и 2) и устойчиво сохраняется на протяжении десятидиевного культивирования. Так, одноядрышковые клетки у гибридов на третий день культивирования составляют 89%, на десятый—92,2%, у цесарок соответственно—83,2 и 78%, у кур—35 и 47%.

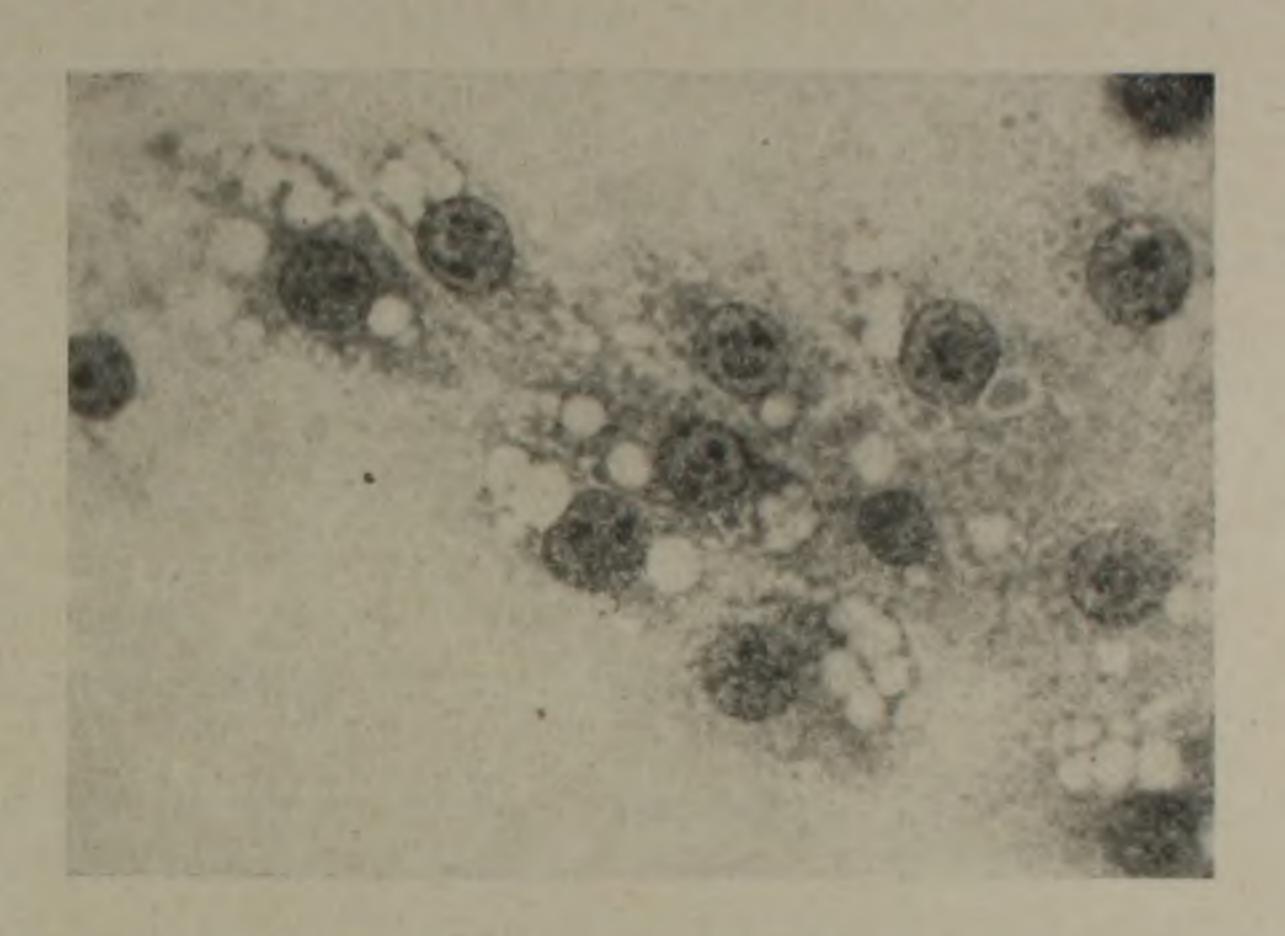


Рис. 1. Клетки с двумя и более ядрышками, характерные для культуры клеток почек кур. 3-и сутки выращивания. Увел. 946×.

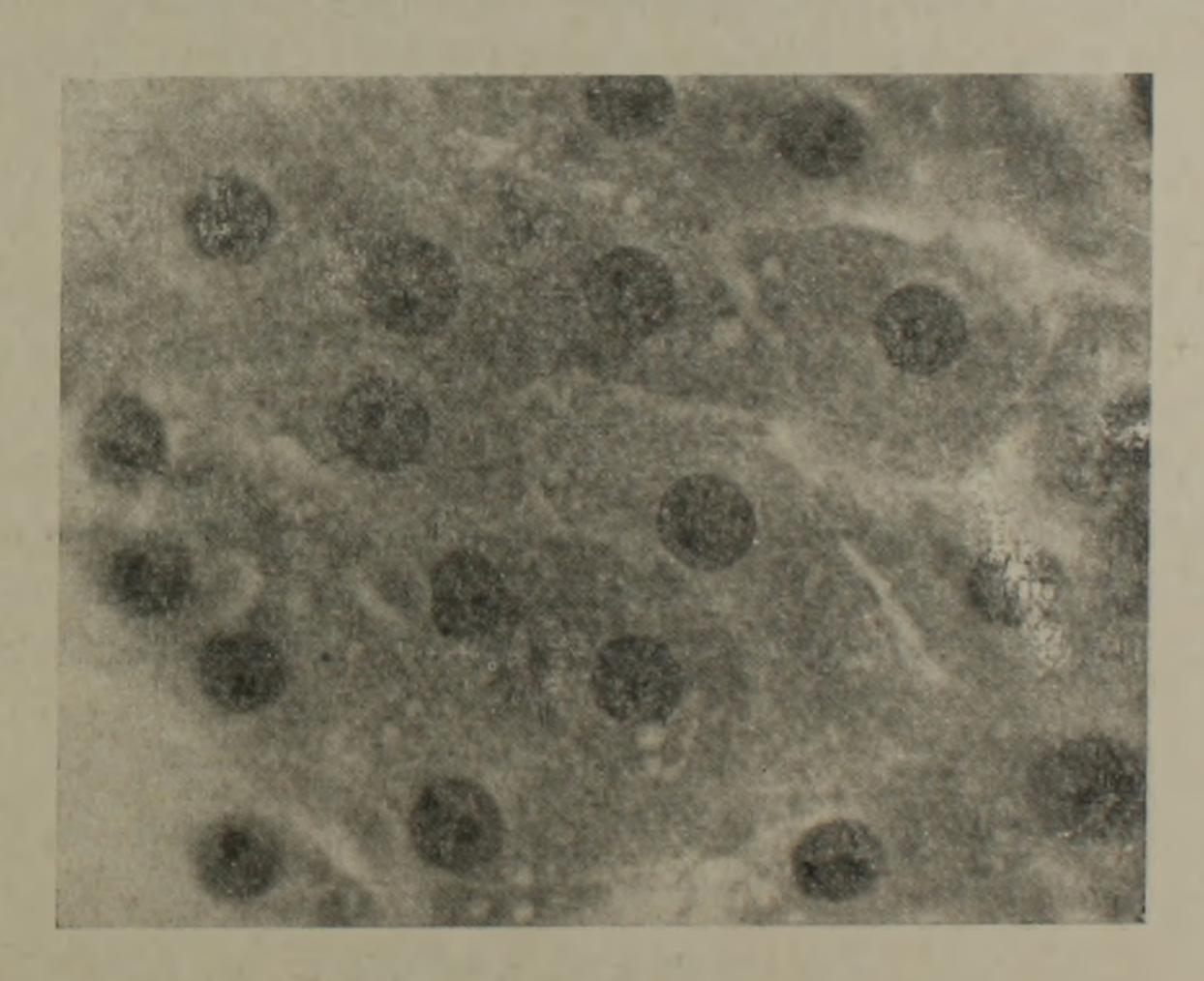


Рис. 2. Клетки почек гибридов с преобладанием одноядрышковых форм. 3-и сутки выращивания. Увел. 946×.

Если учесть, что по Вильмеру [9] продолжительность митотического цикла различных клеток в культуре колеблется в пределах 34—120 мин., а для высших позвоночных чаще составляет 40—90 мин, и принять во внимание скорость образования монослоя, составляющую в описываемом случае пять-шесть суток культивирования, станет очевидным,

что для превращения одиночных, прикрепившихся к стеклу клеток в монослой, покрывающий всю или большую часть поверхности стекла, необходимо развитие многих поколений их. Стабильное же число ядрышек в клетках птиц различного генетического происхождения, наблюдаемое на всем протяжении первичного культивирования, указывает на то, что этот морфологический признак является видоспецифичным и стойко наследуется рядом клеточных поколений.

Наличие группы особей гибридного происхождения среди сравниваемого материала позволяет рассмотреть не только вопрос стабильного сохранения видоопецифичного числа ядрышек в процессе культивирования клеток, но и затронуть проблему наследственной детерминации этого признака. Достаточно контрастные различия между количеством ядрышек у исходных родительских форм и преимущественное воспроизведение одноядрышковости клетками гибридов указывает на то, что последняя, присущая материнской форме — цесарке, — при скрещивании выраженно доминирует над двуядрышковостью — признаком отцовской формы—курицы.

Имеющийся в нашем раопоряжении материал пока не позволяет более точно охарактеризовать тип наследования рассматриваемого признака, который в равной мере может быть отнесен как к случаю, подконтрольному ядерным детерминантам, так и к материнской плазменной наследственности, так как гибридные клетки принадлежат особям, полученным от типа скрещивания ♀ цесарка Х ♂ петух, а обратный вариант скрещивания отсутствует ввиду трудности получения гибридов. Не исключена также возможность изменения под влиянием скрещивания группировки хромосом внутри интеркинетического ядра и в связи с этим изменения локализации ядрышкообразующих центров хромосом.

Независимо от того, какой из перечисленных механизмов наследственности является ответственным за число и размеры ядрышек, полученные факты позволяют прийти к заключению, что в основе количественной динамики ядрышек лежит видоспецифическая наследственно закрепленная норма реакции, уровень которой в значительной мере обусловлен функциональной напряженностью белковых метаболизмов клетки.

Институт зоологии АН АрмССР

Поступило 29.11 1972 г.

b. Ֆ. ՊԱՎԼՈՎ, Վ. b. լ**Ե**ՈՆՈՎԻՉ

ՀԱՎԵՐԻ, ԽԱՅՏԱՀԱՎԵՐԻ ԵՎ ՆՐԱՆՑ ՀԻՔՐԻԴՆԵՐԻ ԿՈՒԼՏՈՒՐԱԼ ՔՋԻՋՆԵՐԻ ԿՈՐԻՋՆԵՐՈՒՄ ԿՈՐԻՋԱԿՆԵՐԻ ԺԱՌԱՆԳԱՔԱՐ ԴԵՏԵՐՄԻՆԱՑՎԱԾ ՔԱՆԱԿԸ

U. of hn hn to

Կուլտուրայում երիկամնային բջիջների կորիզների մեջ կորիզակների քանակի վերաբերյալ կատարված դիտումները հաստատում են, որ խայտահավերի հյուսվածըների համար բնորոշ են մեկ կորիղակով բջջային ձևերի գերակշռուսակային հատկանիշ է։ սակային հատկանիչ է։

Հավերի և խայտահավերի կորիզակների քանակի միջև եղած հակադիր տարբերությունները հնարավորություն ընձեռեցին հետևելու թռչունների նշված տեսակների հիբրիդների մոտ այդ հատկանիշի ժառանգելիությանը։ Հիբրիդների բջիջներում կորիզակների հաշվառումը ցույց տվեց, որ նրանց համար բնորոշ է մեկկորիզանի ձևերի վերարտադրումը։ Մեկկորիզանիությունը, որը հատուկ է մայրական օրգանիզմին (խայտահավ), խաչաձևման ժամանակ զգալիորեն գերակշռում է երկկորիդանիությանը, որը հայրական ձևի (հավի) հատկանիշ է։

ЛИТЕРАТУРА

- 1. Вильсон Э. Клетка, 1, 1936.
- 2. Кикнадзе И. И. Цитология, III, 1, 1961.
- 3. *Леонович В. Э.* Особенности почечных клеток кур, цесарок и гибридов между ними в условиях культивирования. Канд. диссертация, Ереван, 1968.
- 4. Brachet 1. Biochemical cytology, 1955.
- 5. Caspersson T. Cell growth and cell function, 1950.
- 6. Elsdale T. R., Fischberg M., Smith S. Exp. cell. Resear., 14. 3, 1958.
- 7. Gates R. R. Bot. rev., 8, 1942.
- 8. Petersen G. B., Therkelsen A. I. Exp. cell. Resear., 28, 3, 1962.
- 9. Willmer E. N. Cells and tissues in culture, 1965.