T. XXV, № 11, 1972

КРАТКИЕ НАУЧНЫЕ СООБЩЕНИЯ

УДК 576.353

С. М. АКОПЯН, Н. У. НАДЖАРЯН

МИТОТИЧЕСКИЙ РЕЖИМ ПЕРВИЧНОЙ КУЛЬТУРЫ ТКАНЕЙ ЭМБРИОНА АРМЯНСКОГО ХОМЯЧКА В УСЛОВИЯХ ПАРАСИНХРОННОГО ДЕЛЕНИЯ

Как известно, действие различных факторов, способных вызывать нарушения в этапах митотического цикла, неоднозначно [1]. В одних случаях митоз может необратимо прекратиться на какой-либо фазе (в основном в метафазе), в других—ингибирование процессов жизнедеятельности клеток может смениться «взрывами» клеточного деления, после чего в клетках некоторое время цикл продолжает проходить синхронно.

Настоящая работа посвящена изучению реакции первичной культуры тканей эмбриона армянского хомячка (ХЭТ) на воздействие физического фактора—холода—с целью получения ее парасинхронного деления.

Материал и методы. Объектом исследования служила однослойная культура ХЭТ. Методика получения парасинхронной культуры заключалась в следующем: эмбриональная ткань хомячка диспергировалась 0,25% раствором трипсина ДИФКО по общепринятой методике. Монослой клеток выращивался в пенициллиновых флаконах на покровных стеклах (18×19 мм) в 2 мл ростовой жидкости. Последняя состояла из среды 199 с 5% бычьей сывороткой (рН 7,0). Инкубация культур проводилась при 37°С. На 3-и сутки культивирования клеток, в момент их экспоненциального роста (последний определялся предварительно), флаконы помещались в рефрижератор при 4°С. Спуста 0,5; 1; 1,5; 2 час. культуры переносились в термостат и инкубировались при 37°С в течение 18 час. Контролем служили клетки, не подвергавшиеся воздействию температурного блока. Материал для исследования был взят в период максимального накопления делящихся клеток в культуре—через час после инкубации. Исследование культур проводилось с помощью светового микроскопа: препараты фиксировали в 96° спирте и окрашивали гематоксилином и эозином.

Для предварительного определения митотической активности культур стекла, на которых росли клетки, извлекались из флаконов ежесуточно в течение 4—5 суток и обрабатывались по указанной выше прописи. Митозы подсчитаны в различных частях препарата на 5000 клеток.

Результаты исследований. Как видно из рис. 1, пик митотической активности не подвергнутой охлаждению культуры отмечался на 3-и сутки инкубирования и составлял 18%. Изучение ингибированной культуры показало, что воздействие температурного блока приводит не только к изменению ее митотического индекса, но и к заметным нарушениям морфологии делящихся клеток.

Кривые «взрывов» деления охлажденных клеток и пик митотической

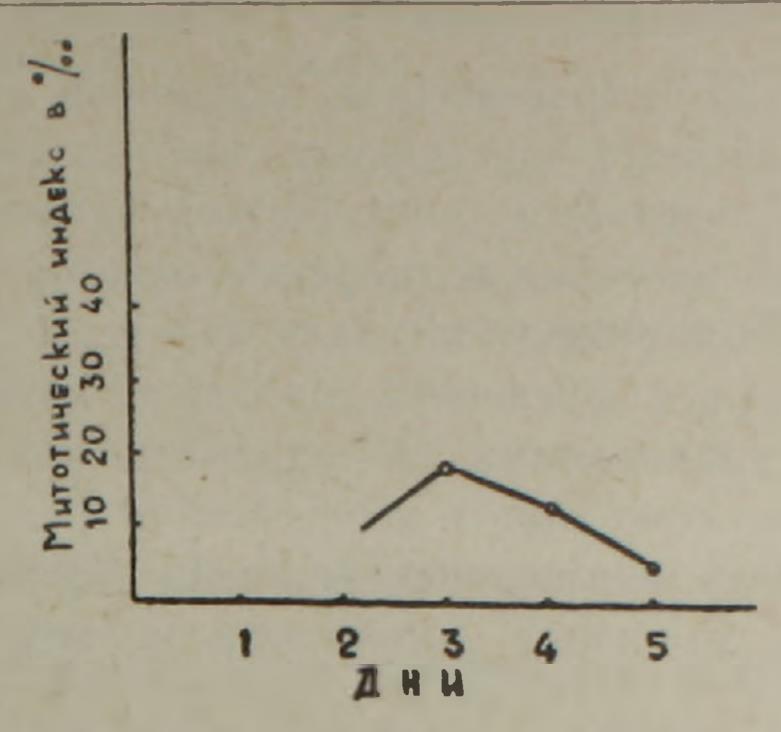


Рис. 1. Кривая митотической активности клеток ХЭТ.

активности клеток контроля показаны на рис. 2. Митотический индекс клеток контрольных и ингибированных культур соответственно равнялся 18% и 51% при 2-часовом охлаждении. Изучение митотической активности охлажденных культур в течение 0,5; 1; 1,5 час. не выявило существенных различий в показаниях митотического индекса, который соответственно равнялся 22% о, 29% о.

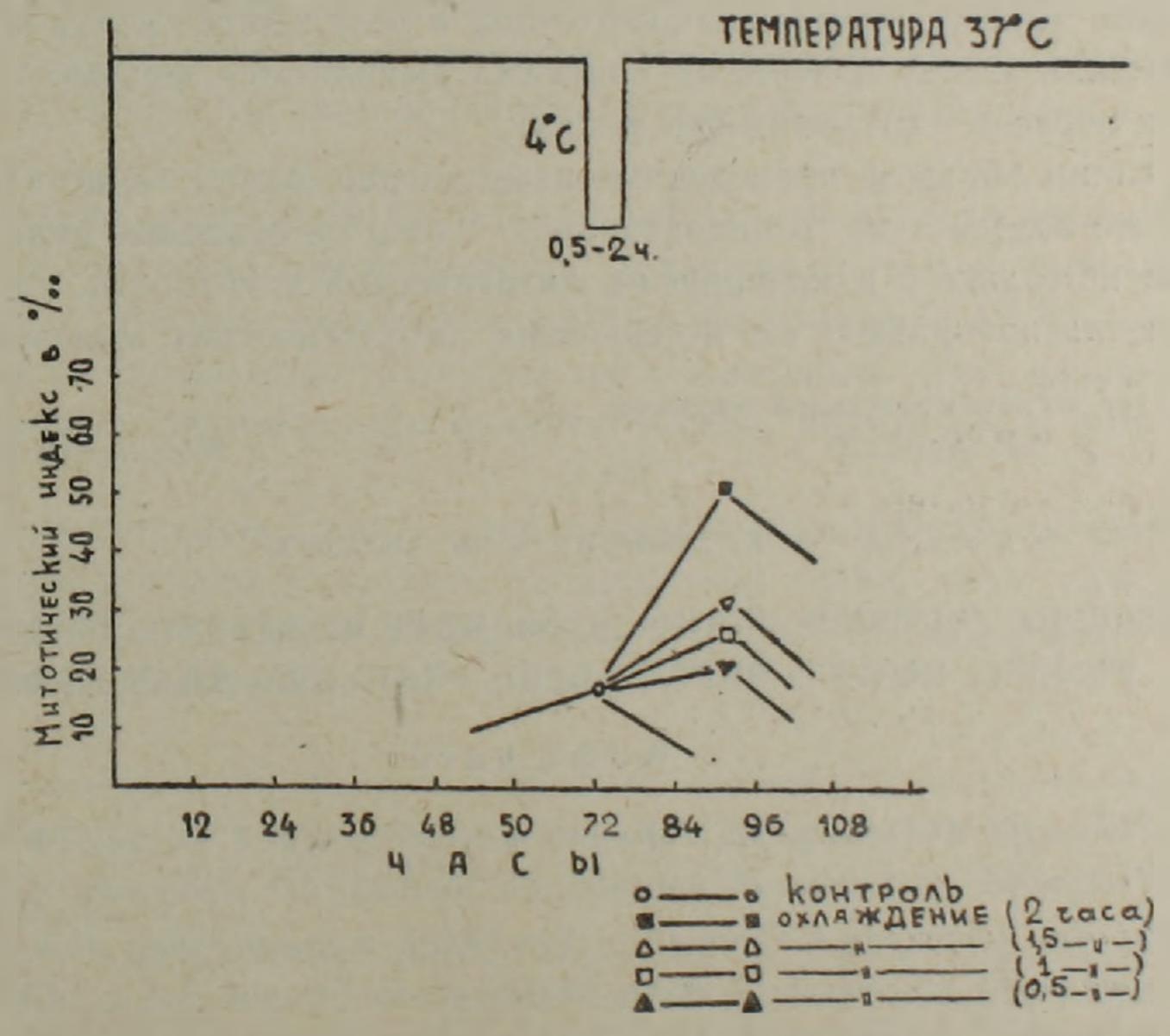


Рис. 2. Кривые митотической активности клеток ХЭТ, ингибированных холодом.

Характер реакции клеток первичной культуры на ингибирование холодом так же, как и перевиваемых, проявляется в повышении митотической активности [2, 3], хотя процент делящихся клеток в первичной культуре значительно ниже. Феномен частичной синхронизации, по-ви-

димому, объясияется гетерогенностью первичной культуры, вследствие чего делению подвергается определенная часть клеточной популяции.

Параллельно с изучением митотической активности ингибированных культур тканей проводилось морфологическое исследование делящихся клеток. Было подтверждено наличие двух основных компонентов митотического аппарата. Последний состоял из хромативного компонента, образованного хромосомами, и ахромативного, который был пред ставлен звездами, центриолями и веретеном. Нередко в клетках на стадии телофазы остатки центрального веретена (флеминговское тельце) сохранялись почти до конца цитокинеза в виде темноокрашенных дисков.

Анализ препаратов показал, что наряду с нормальными митозами в охлажденных культурах ХЭТ встречались различные группы патологических митозов: аномалии, связанные с повреждением хромосом (одиночные, множественные фрагменты хромосом, отставание фрагментов хромосом в метакинезе и при анафазном движении, хромосомные мосты, склеивание хромосом, образование микроядер); с повреждением других компонентов митотического аппарата (рассеивание хромосом в метафазе, многополюсные и асимметричные митозы); с нарушением цитотомии (преждевременная цитотомия, в результате которой в районе перетяжки между дочерними клетками выявляются фрагменты хромосом и нередко—хромосомные мосты).

Таким образом, проведенные нами эксперименты свидетельствуют о том, что воздействие температурного блока на тканевые культуры приводит не только к изменению их митотической активности, но и к появлению разнообразных по морфологии патологических митозов.

Институт экспериментальной биологии АН АрмССР

П оступило 21.111 1972 г.

Ս. Մ. ՀԱԿՈՐՅԱՆ, Ն. Ու. ՆԱՋԱՐՅԱՆ

ՀԱՅԿԱԿԱՆ ՀԱՄՍՏԵՐԻ ՍԱՂՄԻ ՀՅՈՒՍՎԱԾՔԻ ԱՌԱՋՆԱՅԻՆ ԿՈՒԼՏՈՒՐԱՅԻ ՄԻՏՈՏԻԿ ՌԵԺԻՄԸ ՊԱՐԱՍԻՆԽՐՈՆ ԲԱԺԱՆՄԱՆ ՊԱՅՄԱՆՆԵՐՈՒՄ

Udhnihned

Ջերմային մեկուսացման մեխոդով պարզաբանվել է հայկական համատերի հյուսվածքային կուլտուրայի առաջնային բաժանման մասնակի համաժամանակեցումը։ Կատարված հետազոտությունների արդյունքները վկայում են, որ հյուսվածքային կուլտուրայի սառը ինգիբիցիան հասցնում է ոչ միայն միտոտիկ ակտիվության բարձրացման, այլև պաթոլոդիական միտոզների տարբեր խմբերի առաջացմանը։

ЛИТЕРАТУРА

1. Марголис Л. Б. Цитология, XII, 6, 697, 1970.

3, Lindhal P. E., Sorenby L. Exptl. Cell Res., 43, 424, 1966.

^{2.} Newton A. A., Wildy P. Exptl. Cell Res., 16, 624, 1959.