т. XXV, № 11, 1972

УДК 595.78:576.858

В. Г. АЙРАПЕТЯН, И. Е. МАРКАРЯН, К. Е. АБЕЛЯН

МОРФОЛОГИЯ ВИРУСА, ВЫДЕЛЕННОГО ПРИ ГРАНУЛЕЗЕ ОЗИМОЙ СОВКИ (AGROTIS SEGUET UM SCHIFF)

В условиях Армянской ССР озимая совка и совка ипсилон имеют широкое распространение и причиняют значительный вред табаку, кукурузе, картофелю, капусте, кормовым и другим культурам.

Изучение вирусов, вызывающих эпизоотию озимой совки, представляет большой практический интерес ввиду возможности использования их в микробиологическом методе борьбы с вредителями полевых культур.

Вирусы насекомых, по сравнению с вирусами животных, растений и бактерий, мало изучены. Особенно недостаточно исследований, посвященных изучению морфологии, динамики развития этих вирусов в организме насекомых и их структуры. Между тем изучение морфологии и структуры вирусов насекомых имеет важное теоретическое и практическое значение. Опубликованные по морфологии вирусов насекомых работы относятся главным образом к полиэдрозам, гранулезам же посвящено сравнительно мало исследований [2, 3, 4, 5].

Вирусное заболевание озимой совки по характеру течения, внешним признакам и по свойству образовывать в клетках вирусные тельцавключения (гранулы) относится к типичным гранулезам [5].

В настоящем сообщении излагаются результаты проведенного нами морфологического исследования вируса, выделенного от озимых совок, больных гранулезом.

Материал и методика. Для получения инфекционного материала гусеницы озимой совки 3-го возраста заражались через корм, смоченный вирусной суспензией. Погибшие от гранулеза гусеницы высушивались на воздухе и хранились в холодильнике

Очищенные гранулы выделялись из погибших гусениц с помощью четыреххлористого углерода гомогенизацией и многократным центрифугированием, пока на дно центрифужной пробирки не оседал слой серовато-белых гранул.

Освобождение вирусных частиц из телец-включений осуществлялось по методике Бергольда следующим образом: очищенные и высушенные в вакуум-эксикаторе гранулы заливались слабощелочным раствором (0,1 М Na₂CO₃+0,05 М NaCl) из расчета на 1,5 г сухих гранул 30 мл щелочного раствора; смесь ставилась на магнитную мещалку на 1,5 час., после чего суспензию центрифугировали при 5000 об/мин в течение 20 мин; осадок выбрасывали, а надосадочную жидкость центрифугировали при 25000 об/мин в течение 30 мин. Для электронномикроскопических исследований осадок суспензировали и каплю взвеси наносили на сетки с пленкой-подложкой из парладиона, контрастировали 2% раствором фосфорновольфрамовой кислоты при рН 6,9, высушивали и исследовали с помощью электронного микроскопа IEM—6 при различных увеличениях.

Биологический журнал Армении, XXV, № 11-3

Результаты исследования. При просмотре препаратов в электронном микроскопе выяснилось, что гранулы имеют вид овальных телец с более или менее параллельными сторонами (рис. 1). Выявить какие-ли-

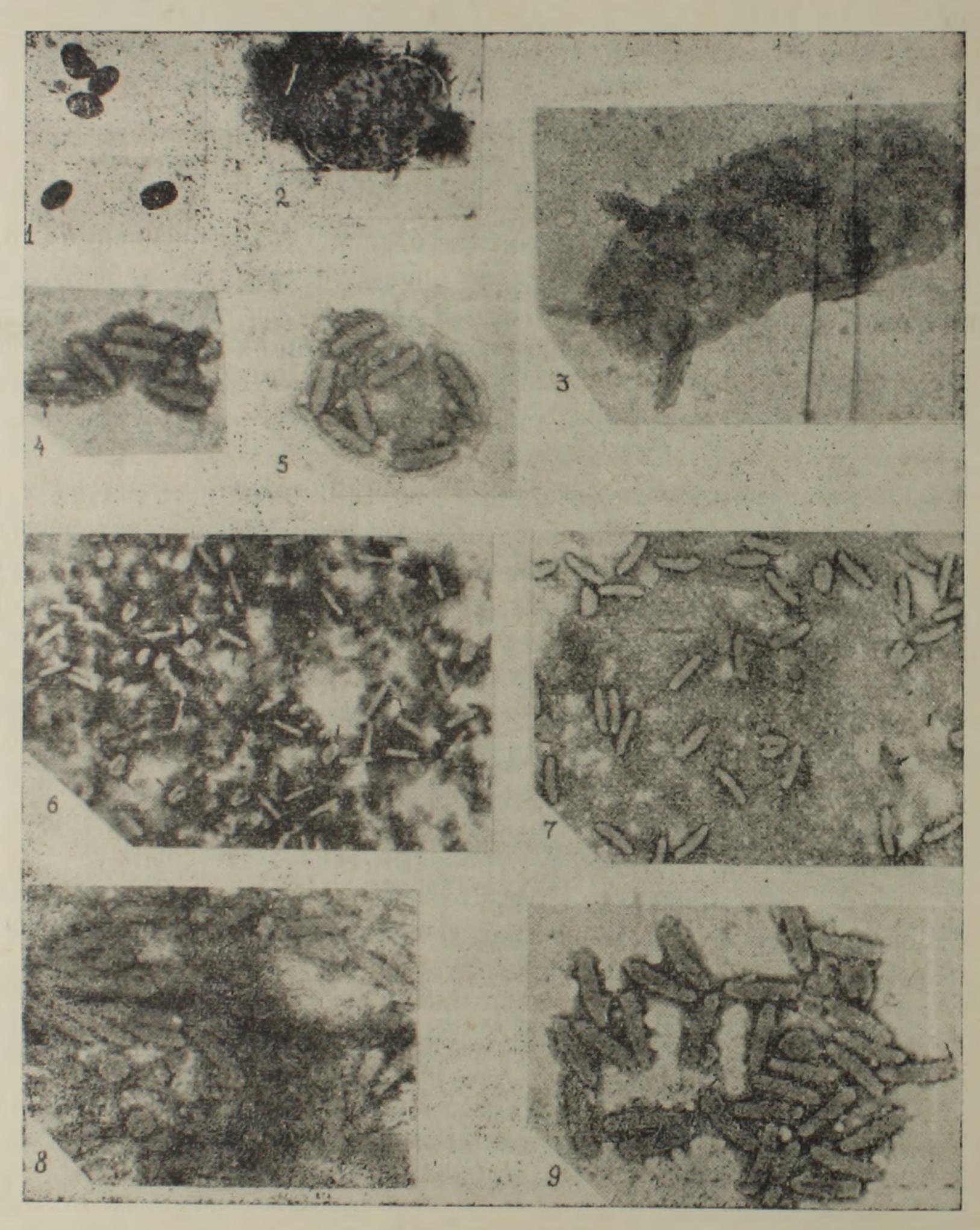


Рис. 1. Гранулы, имеющие вид овальных телец. ×25000.

Рис. 2. Наружная оболочка гранулы. ×25000.

Рис. 3. Высвобождение вирусов вследствие распада гранулы. ×50000.

Рис. 4. Распавшаяся наружная оболочка вируса. ×50000.

Рис. 5. Распавшаяся гранула, содержащая вирионы. ×45000.

Рис. 6. Округлой и палочковидной формы вирионы. ×25000.

Рис. 7 и 8. Внутренний стержень вириона, имеющий вид канала. (рис. 7 × 35000, рис. 8 × 65000).

Рис. 9. Отростки на концах вириона. ×65000.

бо структуры нам не удалось, так как они представляют собой электроннооптически плотные образования. Размер гранул 0,3 мк.

При обработке слабой щелочью гранулы становятся электроннооптически проницаемыми, и представляется возможным наблюдать их наружную оболочку (рис. 2). Как видно из рис. 2 и 3, распад капсулы сопровождается высвобождением вирусов (вирионов). Вирионы вируса гранулеза имеют форму палочки с закругленными концами, размером $2400\pm100~\text{Å}\times500\pm50~\text{Å}$. Снаружи они покрыты оболочкой, которая также подвергается действию щелочи, растворяется, обнажая вирион. Диаметр без наружной оболочки — около 370 A° . Наружная оболочка не влияет на форму вируса (рис. 4).

В исследованном материале обнаруживаются вирионы как округлой, так и палочковидной формы. Можно предположить, что округлые образования являются формами стадии развития данного вируса. В процессе развития они выпрямляются, превращаясь в палочковидные формы (рис. 6).

Как было сказано выше, вирион покрыт рыхлой наружной оболочкой, под которой расположена внутренняя оболочка, состоящая из субъединиц, уложенных в виде спирали. Внутри этих субъединиц виден канал. Субъединицы располагаются вокруг стержня, имеющего вид канала (рис. 7, 8). Можно предположить, что в канале расположен геном вириона—нуклеиновая кислота. Диаметр стержня—около 180 Ű, диаметр канала—около 50 Å.

На концах вирионов обнаружены отростки (рис. 9). На некоторых снимках видно, что вирионы этими отростками прикрепляются друг к другу. По-видимому, эти отростки служат для прикрепления и проникновения вириона в клетку, т. е. выполняют ту же функцию, что и отростки бактериофага. Структура отростков нами пока не изучена.

В литературных источниках указывается, что гранула содержит один [1, 4, 6], в редких случаях два вируса [7, 8]. Однако, как показывают наши исследования, гранула может содержать несколько зрелых вирионов, иногда до 7 (рис. 3 и 5). Этот факт оригинален и установлен нами впервые.

Институт защиты растений, Институт животноводства и ветеринарии МСХ АрмССР

Поступило 29.V 1972 г.

Վ. Գ. ՀԱՅՐԱՊԵՏՅԱՆ, Ի. Ե. ՄԱՐԳԱՐՅԱՆ, Կ. Ե. ԱԲԵԼՅԱՆ

ԳՐԱՆՈՒԼՅՈԶՈՎ ՎԱՐԱԿՎԱԾ ԱՇՆԱՇԱՑԱՆ ԲՎԻԿԻՑ ԱՆՋԱՏՎԱԾ ՎԻՐՈՒՍԻ ՁԵՎԱԳԱՆՈՒԹՅՈՒՆԸ

Udhnhnid

ուսումնասիրված այդ վիրուսների ձևաբանական կառուցվածքը։

Մեր ուսումնասիրված վիրուսն իր ձևակազմությամբ պատկանում է գրանուլյող առաջացնող վիրուսների շարքին։ Ըստ իր կառուցվածքի վիրիոնը սիգարաձև է, անկյուններում կլորացած, արտաքինից ծածկված փուխը թաղանթուլ, որը հեշտությամբ կարելի է քայքայել հիմքային նյութերի ներգործությամբ։

Գրանուլյողի վիրուսի վիրիոնի չափերն են՝ 2400±100A°X 500±50A°,
Ուսումնասիրությունները ցույց են տալիս, որ մեկ դրանուլի մեջ կարող
են լինել ոչ թե մեկ, երկու վիրուսային մասնիկ, ինչպես հաստատում են շատ հետաղոտողներ, այլ մի քանի (մինչև լութ)։

ЛИТЕРАТУРА

- 1. Абдумаликова З. А. Узбекский биологический журнал, 5, 1970.
- 2 Дикасова Е. Т. Гранулез озимой совки и его применение для борьбы с этим вредителем Ташкент, 1969.
- 3 Шехурина Т. А. IX Международный конгресс по микробиологии, 1966.
- 4. Bergold G. H. Handbuch der Virusforschung. Bd. 4, Wien, 1958.
- 5. Huger A. Insect Pathology (E. A. Steinhaus, ed.) 1. Academic Press, New York, 1963.
- 6. Steinhaus E. A., Hughes K. M., Wasser H. B. Journal of Bacteriology, 57, 1949.
- 7. Smith K. M. Advances in Virus Research, 3, 1955.
- 8. Smith K. M., Xeros N. Parasitology, 44, 1954.