T. XXV, № 10, 1972

УДК 581.19

## КРАТКИЕ НАУЧНЫЕ СООБЩЕНИЯ

Г. В. БАРСЕГЯН, Л. Г. КАЗАРЯН

# ВЛИЯНИЕ НЕКОТОРЫХ СИНТЕТИЧЕСКИХ АМИНОВ НА АЗОТИСТЫЙ ОБМЕН У ПРОРОСШИХ СЕМЯН ЧЕЧЕВИЦЫ И ФАСОЛИ

В литературе имеется ряд данных по изучению обмена азота у растений.

Процессы синтеза и распада белка и его содержание в семенах существенно меняются под влиянием различных факторов [4—6].

Ильина и Кузнецова [3], обрабатывая семена радиоактивными веществами, наблюдали изменения соотношений белкового и небелкового азота в проростках.

Исследованиями Булко и Вечер [2] найдено, что за 10 дней прорастания в растениях происходит значительное уменьшение сухих веществ, заметно снижается содержание белкового и общего азота. В других опытах [7] семена обрабатывались аскорбиновой кислотой. Содержание азота в обработанных растениях в 2,5 раза превышало этот показатель контроля.

Многие авторы считают, что эффект воздействия ростовых веществ на клетку заключается в изменении проницаемости клеточной оболочки и протоплазмы для воды (коллондные частицы пограничного слоя плазмы при обработке набухают, расширяются и увеличивают через плазматические поры поступление воды в клетку).

Однако не исключено существование разных механизмов при возлействии разных ростовых веществ.

В предыдущей работе [1] мы исследовали влияние следующих аминов на прорастание семян фасоли и чечевицы:

1. 4-липеридил-1-фенил 2,3-дихлор-бутен-2 (ПФД), 2. 4-липеридил-1-толил 2,3-дихлор-бутен-2 (ПТД), 3. 4-липеридил-1-п-анизидил-2,3-ди-хлор-бутен-2 (ПАД).

У обработанных семян энергия прорастания и процент всхожести были значительно выше, чем в контрольных семенах.

В настоящей работе мы изучили азотистый обмен у семян фасоли и чечевицы под влиянием этих же аминов при 6-часовой обработке.

Обработка семян проводилась в чашках Петри в среде Кноопа. Общий и остаточный азот определяли по общепринятому методу Кьельдаля, белковый азот—по их разности, протеазную активность—по прорастанию остаточного азота при инкубации проб в течение 24 час. при 37°C. Все эти показатели спределялись в 4 срока посева (1-й, 3-й, 7-й и 10-й дни).

Результаты исследований показывают, что концентрация общего азота в расчете на единицу сухого веса в контрольных семенах фасоли и чечевицы заметно увеличивается на 3-й день прорастания, затем на 7-й день претерпевает сильный спад с последующим повышением на 10-й день. Полученные данные на примере фасоли приведены на рис. 1.

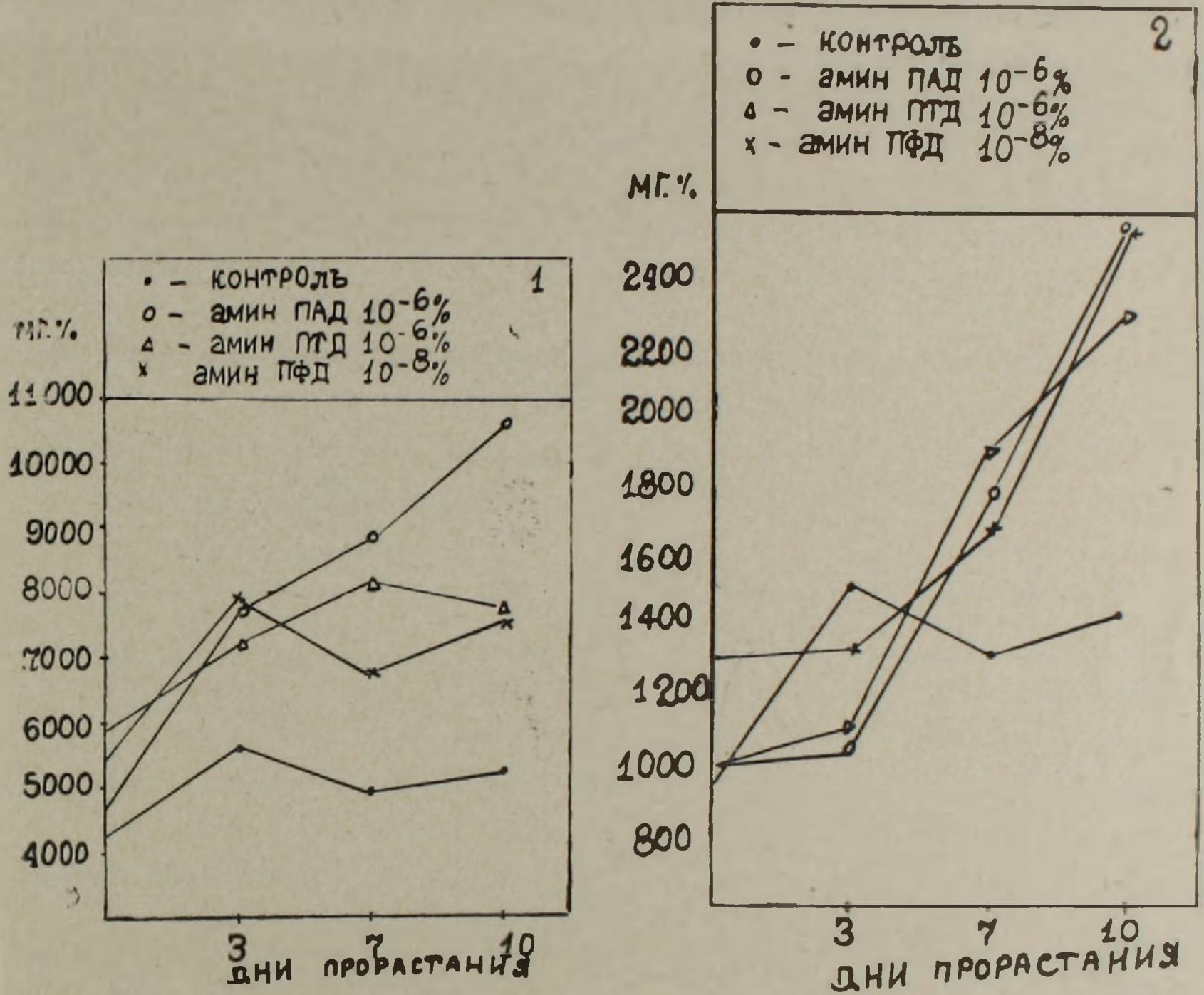


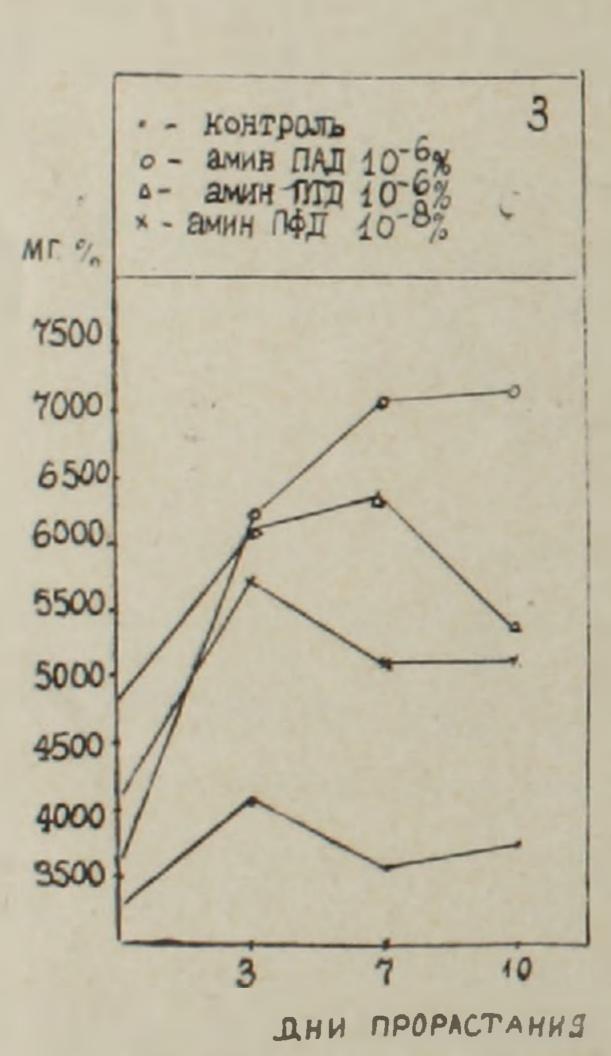

Рис. 1. Динамика изменения содержания общего азота в проросших семенах фасоли.

Рис. 2. Динамика изменения содержания остаточного азота в проросших семенах фасолы.

Общий азот в процессе прорастания у чечевицы по сравнению с контролем увеличивается под влиянием ПАД в концентрации  $10^{-6}$  % и  $10^{-8}$  %. В первый же день при концентрации  $10^{-6}$  % рост его составляет 11%, на третий день—23%. На 7-й и 10-й дни общий азот также достоверно увеличивается.

 $\Pi A \Pi$  эффективно влияет на увеличение общего азота и у фасоли при обеих концентрациях. При обработке  $\Pi T \Pi$  общий азот увеличивается при концентрации  $10^{-6}$  % во все четыре дня прорастания.

Статистически достоверное повышение концентрации общего азота под действием ПФД наблюдается только на 7-й и 10-й дни. В исследуемых семенах в процессе прорастания увеличивается и остаточный азот. У обработанных семян чечевицы он больше увеличивается на 7-й и 10-й дни (соответственно 74 и 91%). У фасоли под влиянием ПАД остаточ-


ный азот в первый и третий дни не подвергается изменению, а на 7-й и 10-й дни при концентрации 10 - % незначительно увеличивается (рис. 2).

Концентрация белкового азота в контрольных семенах чечевицы и фасоли по мере прорастания изменяется параллельно с общим азотом: наивысший уровень его наблюдается на 3-й и 10-й дни.

Наиболее наглядно выражено увеличение белкового азота у чечевицы при обработке раствором ПАД в концентрации  $10^{-6}$  %, а у фасоли—в концентрации  $10^{-4}$  % и  $10^{-6}$  % (рис. 3). ПФД проявляет положительный эффект при концентрации  $10^{-8}$  % на 10-й день прорастания.

У чечевицы под влиянием ПФД при концентрации  $10^{-8}$  % в 1-й и 3-й дни белковый азот по сравнению с контролем повышается, а на 7-й и 10-й дни увеличивается в обенх концентрациях: у фасоли наивысшие показатели на 3-й день при концентрации  $10^{-8}$  %.

Аналогичные закономерности обнаружены также при изучении вегетативных органов растений (корень, стебель).



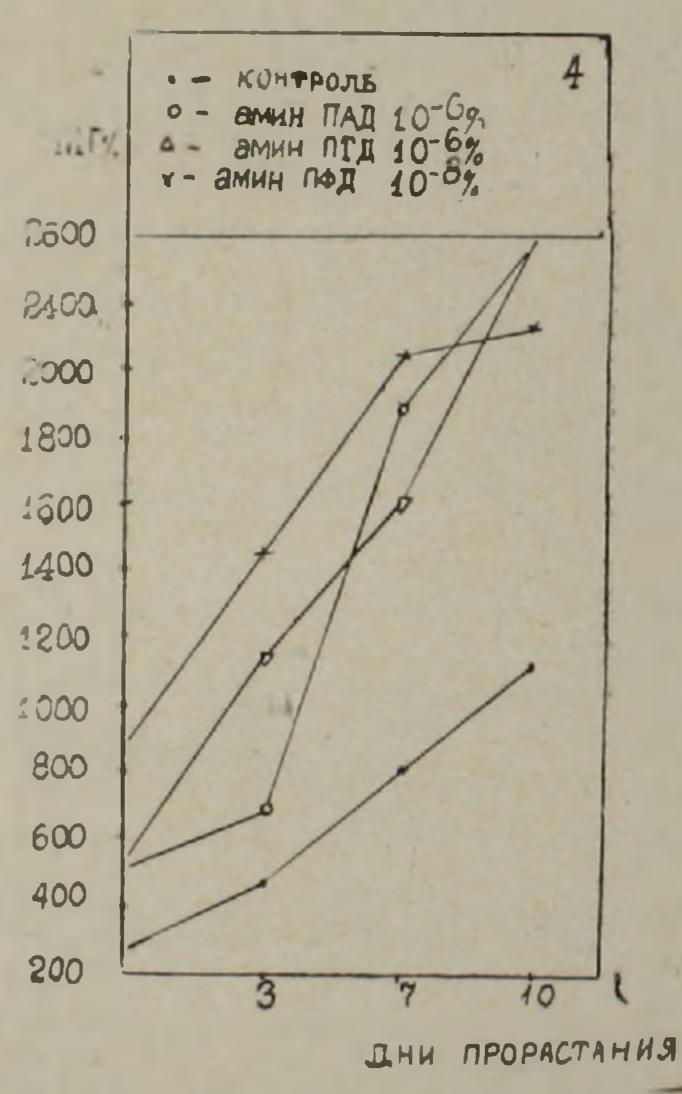



Рис. 3. Динамика изменения содержания белкового азота в проросших семонах фасоли.

Рис. 4. Динамика изменения протеазной активности в проросших семенах фасоли.

При обработке этими аминами в прорастающих семенах фасоли и чечевицы наблюдается также усиление активности протеазы. У контрольных и обработанных семян фасоли и чечевицы активность протеазы в процессе прорастания увеличивается. ПАД оказывает существенное влияние на повышение активности протеазы в семенах чечевицы. При дозе  $10^{-6}$  % она достоверно повышается до 7-го дня. У семян фасоли наивысшие показатели протеазной активности отмечены на 7-й (140%) и 10-й дни (189%) при концентрации  $10^{-6}$  % (рис. 4). Активность протеазы увеличивается и в вегетативных органах фасоли.

Итак, наиболее эффективной в этом отношении для семян фасоли и чечевицы оказалась их обработка раствором ПАД в концентрации  $10^{-6}$ %.

Таким образом, исследованные нами амины в основном усиливают процессы белкового анаболизма и катаболизма в прорастающих семенах фасоли и чечевицы, что указывает на ускорение обновления белков, являющееся важным фактором в ингенсификации процессов прорастания.

Подробное изучение механизма действия указанных аминов находится в стадии разработки.

Армянский государственный педагогический институт им. Х. Абовяна

Поступило 14.Х 1971 г.

### Գ. Վ. ԲԱՐՍԵՂՅԱՆ, Լ. Գ. ՂԱԶԱՐՅԱՆ

## ՈՐՈՇ ՍԻՆԹԵՏԻԿ ԱՄԻՆՆԵՐԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՈՍՊԻ ԵՎ ԼՈԲՈՒ ԾԼԱԾ ՍԵՐՄԵՐԻ ԱԶՈՏԱՅԻՆ ՓՈԽԱՆԱԿՈՒԹՅԱՆ ՎՐԱ

## Udhnyhnid

Ուսումնասիրել ենք ազոտային փոխանակությունը լոբու և ոսպի սերմերի մոտ 4-պիպերիդիլ-1-ֆենիլ 2,3-դիքլոր-բության-2 (ՊՖԴ), 4-պիպերիդիլ-1-սողիլ 2,3 դիքլոր—բութեն—2 (ՊՏԴ), 4-պիպերիդիլ-1-ո-անիղիդիլ-2,3-դի քլոր-բութեն-2 (ՊԱԴ) ամինների ազդեցության տակ։ Որոշել ենք ընդհանուր, ւչնացորդային, սպիտակուցային աղոտի քանակությունը և պրոտեաղային ակ-տիվությունը աձեցողության 10 օրվա ընթացքում։

Ընդհանուր ազոտի քանակությունը լոբու և ոսպի ստուգիչ սերմերի մոտ նկատելիորեն ավելանում է աձեցողության 10-րդ օրը։ Ընդհանուր ազոտի քաւնակությունը լոբու փորձնական սերմերի մոտ կոնտրոլի համեմատությամբ ավելանում է ՊԱԴ-ի և ՊՏԴ-ի ազդեցության տակ, իսկ ոսպի սերմերի մոտ ՊԱԴ-ի ազդեցության տակ,

րարուցնորը մաւժաչըս։ Նորը օևիրաչափություն է ըրտանել ըար այն որևորեր որ որ որ որ որ անսար հագարը այս ուրև աջընսմությար երիտանել ըար այն որ որ որ որ որ ուն անսախ ծաարություն։ Հաեսւ ը սոտի որսուգիչ որևորների որս որ որ որ որսուն անսախ ծա-

Մնացորդային ազոսի խտությունը բոլոր սերմերի մոտ ավելանում է և որոշակիորեն բարձրանում պրտտեազային ակտիվությունը։

Ուտումնասիրվող ամինների աղդեցության տակ այս ցուցանիշները ավելանում են, հատկապես աձեցողության 7-րդ և 10-րդ օրերը։

Փորձերի արդյունքները վկայում են, որ նշված ամինները ուժեղացնում են սոլիտակուցների ինչպես անաբոլիկ, այնպես էլ կատաբոլիկ պրոցեսները այսինքն՝ արապացնում են նրանց նորագոյացությունը, որը համարվում է սեր-մերի աձեցողության խթանման կարևոր գործոններից մեկը։

#### ЛИТЕРАТУРА

- 1. Барсегян Г. В., Казарян Л. Г., Язычян А. С. Влияние некоторых синтетических аминов на прорастание семян фасоли и чечевицы (в печати).
- 2. Булко О. П., Вечер А. С. Сб. II биол. конф. Прибалтийских республик и Белорусской ССР, 1965.
- 3. Ильина Г. В., Кузнецов Н. Н. Научн. докл. высшей школы, Биология, 1, 92-95, 1964.
- 4. Ракитин Ю. В., Стрельников Б. Д. Физиология растений, 1, 17, 91—95, 1970.
- 5. Удовенко Г. В., Минько И. Ф. Физиология растений, 2, 1966.
- 6. Burt H. W., Muzik T. J. Physiol. Plant, 23, 3, 498, 1970.
- 7. Swaraj K., Garg O. P. Physiol. Plant, 23, 5, 889, 1970.