т. XXIV, № 2, 1971

УДК 539.1:599.325

м. О. ПОГОСЯН

ДИНАМИКА ПРЕВЕНТИВНЫХ СВОЙСТВ СЫВОРОТКИ КРОВИ И БЕЛКОВЫХ ФРАКЦИИ У ОБЛУЧЕННЫХ И ИММУНИ-ЗИРОВАННЫХ КРОЛИКОВ

Превентивные свойства сыворотки крови являются одним из важных факторов естественной резистентности. До сих пор не полностью выяснены их природа и специфичность, а также-их взаимоотношения с другими показателями иммунитета. В литературе есть указания на взаимосвязь превентивных свойств сыворотки и глобулиновых фракций крови [2, 3]. По данным Майкль и Розен [12], гамма-макроглобулин, полученный из III—I фракции Кона, обладает высоким превентивным действием (ПД). Исследования Эндерс [10] выявили, что превентивное действие сыворотки, в зависимости от примененного для иммунизации антигена, связано с той или иной белковой фракцией крови. Ионизирующая радиация вызывает ряд тяжелых поражений в организме, в том числе угнетается превентивная активность сыворотки крови [4, 7, 8, 13] и значительно изменяется белковый состав крови [1, 5, 6, 9, 11]. В доступной нам литературе мы не встретили работ относительно взаимоотношений указанных факторов в условиях облучения и иммунизации. Задачей данного исследования явилось изучение этого вопроса.

Материал и методика. Под наблюдением находилось 45 кроликов со средним весом 2,3 кг 25 кроликов были облучены однократно в дозе 800 р и в различные сроки после облучения иммунизированы против брюшного тифа (через !, 3, 4, 7 или 11 дней). Условия облучения: аппарат РУМ-11, напряжение тока—187 кв, сила тока—15 ма, фильтры— 0,5 Cu+1,0 мм Al, фокусное расстояние—60 см, мощность—18,5 р/мин. Условия иммунизации: трехкратная вакцинация (0,5; 1,0 и 1,5 млрд микробных тел Ту2) с интервалом в 7 дней. 10 только иммунизированных и 10 только облученных кроликов служили контролем (6 и 7 группы). У подопытных животных в разные сроки до и после облучения определяли превентивные свойства, содержание общего белка и белковых фракций сыворотки крови. Превентивные свойства определялись на мышах и выражались в ПД50, т. е. доза сыворотки, способная защитить от гибели 50% зараженных брюшным тифом мышей. Количество белковых фракций определяли общепринятым электрофоретическим А. Гурвичу) и выражали в г% белка. Данные подвергли статистической обработке.

Результаты и обсуждение. Облучение кроликов в дозе 800 р значительно снижало ПД сыворотки, что отчетливо показано на рис. 1. Во всех облученных группах в ближайшие дни после облучения наступало сни-

жение ПД сыворотки в среднем на 70%. Брющнотифозная вакцинация, произведенная в различные сроки после облучения, способствовала восстановлению ПД. На табл. 1 приведена динамика ПД сыворотки облученных и иммунизированных кроликов. Лучшие показатели ПД были отмечены после III вакцинации. По сравнению с ПД контрольной груп-

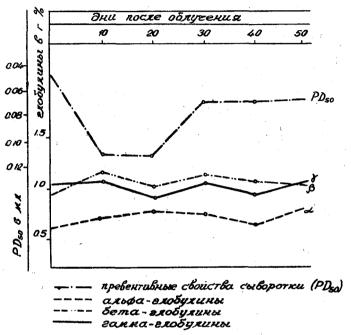


Рис. 1. Динамика превентивных свойств ($\Pi Д_{50}$) и глобулиновых фракций сыворотки крови облученных неиммунизированных кроликов (группа 7).

Таблица Динамика превентивных свойств сыворотки у облученных и иммунизированных кроликов ($\Pi \Pi_{50}$, мл)

	Группы							
Сроки исследования	Облуч	енные	контроль, имму- низированные					
	1	2	3	4	5	6	-	
До облучения и иммунизации 7 дней после I вакцинации 7 дней после II вакцинации	0,067 0,067 0,029 0,045	0,110 0,029 0,029 0,025	0,029 0,045	0,067 0,029 0,029 0,029	0,045 0,045 0,029 0,029	0,013 0,009 0,009 0,013	n å er Linge Program Linge	

пы (иммунизированные, необлученные кролики) ПД₅₀ кроликов 1—5 групп значительно отставала. Так, на 10 день после III вакцинации определение превентивных свойств у предварительно облученных кроликов

выявило $\Pi \Pi_{50} = 0{,}029$ мл, а в тот же срок в контрольной группе $\Pi \Pi_{50} = 0{,}009$ —разница значительная.

Таблица 2 Динамика белковых фракций сыворотки облученных и иммунизированных кроликов

Сроки исследований	Альбу-	Глобулины, г ⁰ / ₀			
	мины, °/0	альфа	бета	гамма	
До облучения и иммунизации	4,29 4,73	0,63 0,63	$\frac{0,82}{0,82}$	$\frac{0,98}{1,02}$	
7 дней после I вакцинации	$\frac{3,52}{4,39}$	$ \begin{array}{r} 0.93 \\ \overline{0.73} \\ 0.79 \\ \overline{0.69} \end{array} $	$ \begin{array}{c} 0,92 \\ \hline 1,04 \\ \hline 1,14 \end{array} $	$ \begin{array}{r} 1,17 \\ \hline 1,37 \\ 1,29 \\ \hline 1,52 \end{array} $	
7 дней после II вакцинации	$\frac{3,35}{4,2}$				
10 д ней после III вакцинации	$\frac{3,36}{4,1}$	$\frac{0.72}{0.75}$	1,03 1,22	$\frac{1,34}{1,42}$	
20 дней после III вакцинации	$\frac{3,47}{4,45}$	$\frac{0.73}{0.73}$	$\frac{1.03}{1.14}$	$\frac{1,33}{1,50}$	
30 дней после III вакцинаци и	$\frac{3,67}{4,16}$	$\frac{0,69}{0,66}$	$\frac{1.01}{1.03}$	$\frac{1,22}{1,28}$	

В числителе представлены данные предварительно облученных кроликов, а в знаменателе—контрольных, только иммунизированных кроликов.

В табл. 2 приведены результаты исследований белковых фракций сыворотки крови кроликов. В результате облучения дозой 800р концентрация альбуминов в сыворотке уменьшалась в среднем на 22%. Наблюдаемое увеличение глобулинов было обусловлено в основном альфафракцией, которая повысилась в среднем на 35%. Трехкратная вакцинащия кроликов способствовала возрастанию концентрации глобулиновых фракций у предварительно облученных в меньшей степени, чем у необлученных (сравни данные, приведенные в числителе и знаменателе в табл. 2, рис. 2 и 3). На рис. 4 изменения изучаемых показателей у предварительно облученных представлены в процентах к исходному уровню: до конца наших наблюдений (50-60 сутки после облучения) уровень альбуминов оставался ниже исходного; альфа-фракция после быстрого и выраженного подъема к 25 суткам несколько снизилась, а изменения бета- и гамма-фракций были более стойкими. На этом же рисунке представлена динамика превентивных свойств сыворотки предварительно облученных животных-к 20-30 суткам после облучения ПД стало восстанавливаться и превысило исходный уровень в среднем на 50%.

Сравнение динамики превентивных свойств и глобулиновых фракций. На рис. 1 представлена динамика сравниваемых показателей у контрольных кроликов группы 7 (облученные, неиммунизированные). В первые же дни после облучения были отмечены диаметрально противоположные

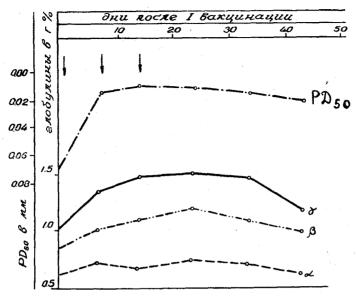


Рис. 2. Динамика превентивных свойств и глобулиновых фракций сыворотки крови иммунизированных, необлученных кроликов (группа 6),

день вакцинации.

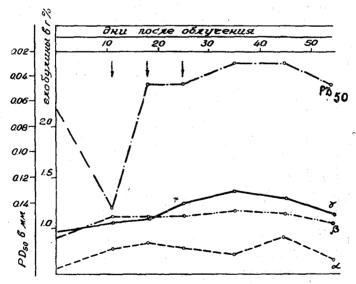


Рис. 3. Динамика превентивных свойств и глобулиновых фракций сыворотки крови кроликов 5 группы (иммунизация начата через 11 суток после облучения).

изменения—значительное угнетение ПД и повышение глобулинов. Начиная с 20 суток после облучения ПД стало повышаться, а уровень глобулинов почти не менялся. Таким образом, у облученных кроликов не наблюдался параллелизм в динамике ПД и глобулинов.

Иммунизация необлученных кроликов (группа 6) стимулировала рост как ПД так и 3 глобулиновых фракций (рис. 2). Сравнение этих

данных выявило выраженный параллелизм в динамике ПД и гамма-глобулинов, но увеличение ПД происходило сравнительно интенсивнее.

Сравнение изучаемых показателей у предварительно облученных кроликов также не выявило существование корреляции между ними (рис. 3 и 4). До начала иммунизации под влиянием облучения у кроликов

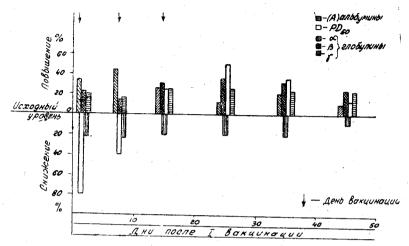


Рис. 4. Динамика превентивных свойств, альбуминов и глобулинов сыворотки крови предварительно облученных кроликов 1—5 групп.

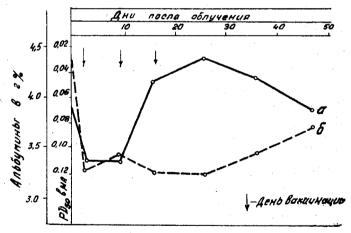


Рис. 5. Динамика превентивных свойств и альбуминовой фракции у кроликов 2 группы (иммунизация начата через 2 суток после облучения), а—превентивные свойства, б—альбуминовая фракция

1—5 групп наблюдалось снижение ПД и повышение концентрации глобулинов. Иммунизация, начатая в разные сроки после облучения, способствовала росту как ПД, так и глобулинов. Но рост ПД шел интенсивнее, чем—глобулинов, что отчетливо показано на рис. 4. Так, после окончания цикла иммунизации ПД₅₀ превысила свой исходный уровень на 73%, а гамма-глобулины—только на 10%. Если после III вакцинации кондентрация глобулинов в крови не отличалась от таковой, отмеченной в

контрольной группе 6, то уровень ПД значительно уступал контрольному. Следовательно, высокая концентрация глобулинов в сыворотке облученных кроликов не является достаточным условием для поддержания нормального уровня превентивных свойств.

Сравнение динамики превентивных свойств и альбуминовой фракции. Облучение в дозе 800 р вызывало параллельное снижение обоих по-казателей. Иммунизация кроликов вызывала противоположные изменения—снижение альбуминов и увеличение ПД. На рис. 5 представлена динамика сравниваемых показателей у предварительно облученных кроликов. В процессе их иммунизации альбумины продолжали оставаться сниженными, а ПД значительно превысило свой исходный уровень, что указывает на отсутствие параллелизма в их динамике.

Таким образом, параллельное изучение изменений превентивных свойств и белковых фракций сыворотки крови у облученных и иммунизированных против брюшного тифа кроликов не выявило корреляции в динамике данных показателей.

Сектор радиобиологии МЗ АрмССР

Поступило 10.1Х 1969 г.

Մ. Հ. ՊՈՂՈՍՅԱՆ

ԱՐՅԱՆ ՇԻՃՈՒԿԻ ՊՐԵՎԵՆՏԻՎ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԻ ԵՎ ՍՊԻՏՆԵՐԻ ԳԻՆԱՄԻԿԱՆ ՃԱՌԱԳԱՅԹԱՀԱՐՎԱԾ ՈՒ ԻՄՈՒՆԱՑՎԱԾ ՃԱԳԱՐՆԵՐԻ ՄՈՏ

Ամփոփում

Իռնացնող ձառագայիների ազդեցուիյան տակ իուլանում են շիձուկի պրևենտիվ հատկուիյունները և զգալի փոփոխուիյան է ենիարկվում արյան սպիտների պարունակուիյունը։ Տվյալ հետազոտուիյան խնդիրն է եղել ուսում-նասիրել ձառագայիահարված ու իմունացված ձագարների արյան շիձուկի պրևենտիվ ուժի և սպիտների քանակի փոփոխուիյունները և ի հայտ բերել նրրանց փոխհարաբերուիյունը։ Փորձարկման մեջ գտնվել են 45 ձագար։ Ճագարներին ենիարկել ենք միանվագ ընդհանուր 800 ռ ձառագայիահարման և տարբեր ժամկետներում իմունացրել որովայնային տիֆի դեմ։ Կատարված հետազոտուիյունը չի հայտնաբերել ուղղակի կապ պրևենտիվ հատկուիյունների և պամա-գլոբուլինների փոփոխուիյունների միջև։ Պրևենտիվ հատկուիյունների և դամա-գլոբուլինների փոփոխուիյունների միջև զուգահեռականունք, որը նկատվել էր ձագարների իմունացման ընիացքում, բացակայում էր ճառագայիահարման պայմաններում ։

ЛИТЕРАТУРА

- 1. Мадиевский Ю. М. Мед. рад. 9, 5, 24, 1964.
- 2. Мешалова А. Н., Бейлинсон А. В., Шаханина Л. Л., Фрязинова И. Б. ЖМЭИ, 9, 81, 1964.

- 3. Нечаева А. С. и Борисова Γ . Н. Тезисы докл. III конфер. молодых научн. сотр. НИИ вакц. и сывор. им. Мечникова, М., 1960.
- 4. Погосян М. О. Радиобиология, 4, 569, 1968.
- 5. *Попель Л. В.* Военно-мед. журн., 5, 17, 1957.
- 6. Равич-Щербо М. И. и Прокопенко Л. Г. Радиобиология, 1, 5, 705, 1961.
- 7. Старкова Т. Г. Специфилеские и неспецифические иммунологические показатели при вакцинации организма в обычных и измененных условиях среды. Докт. дисс. 1963.
- 8. *Шевцова З. В.* Влияние облучения рентгеновыми лучами на иммуногенез и напряженность иммунитета у животных, вакцинированных живой бруцеллезной вакциной. Автореф. кандид. дисс. М., 1961.
- 9. Baudish B., Wilde J. Радиобиология—Радиотерапия, Берлин, 22, 1961.
- 10. Enders J. J. Clin. Invest 23, 510, 1944.
- 11. Fischer M., Magee M., Coulter E. Archives of Biochemistry and Biophysics, 1, 66, 56. 1955.
- 12. Michael J., Rosen Fr. J. exp. med., 118, 619, 1963.
- 13. Murphy J., Sturm E. J. exp. med., 41, 245, 1925.