т. XXIV, № 2, 1971

УДК 582.951.4+631.52

Г. А. СААКЯН

ИСПОЛЬЗОВАНИЕ ФУНКЦИОНАЛЬНО-МУЖСКОЙ СТЕРИЛЬНОСТИ ПРИ ГЕТЕРОЗИСНОЙ СЕЛЕКЦИИ ТОМАТОВ

Явление гетерозиса в селекции овощных культур общеизвестно. В настоящее время имеется достаточно много экспериментальных данных, показывающих превосходство гетерозисных гибридов томатов над районированными стандартными сортами. По общему урожаю такие гибриды превышают обычные сорта на 20—40%, а по раннему урожаю—в 3—4 раза [1—3, 5, 7, 9—13, 16].

В нашей стране, в том числе и в Армянской ССР, гетерозисные семена томатов не нашли еще широкого применения в производстве, что объясняется трудоемкостью их производства и в основном единовременной потребностью в гибридизаторах в период гибридизации.

Для совершенствования методов получения гибридных семян первого поколения наиболее перспективным является метод использования различных форм мужской стерильности.

В настоящее время у ряда овощных культур открыто явление цитоплазматической мужской стерильности (ЦМС), что позволяет получать потомство, обладающее стерильной пыльцой.

По данным Жуковского [6], независимо от частоты встречаемости, явление ЦМС имеет всеобщее распространение у высших растений.

У томатов пока не найдены растения, обладающие цитоплазматической мужской стерильностью. Однако с целью усовершенствования методов получения гибридных семян с успехом можно использовать образцы с генетической и функциональной стерильностью, а также сорта и формы с гетеростильными цветками [4, 5, 13, 14, 17].

Впервые функционально стерильные формы в качестве материнских использовали Буллард и Стевенсон [18], Хойби [20] и Хафен [19].

К растениям с функциональной мужской стерильностью (ФМС) относятся типы Джон-Бер и Врыбчанский низкий. Пыльца у этих растений фертильна, но спыление не происходит потому, что пыльники при созревании не растрескиваются. Известно также, что степень стерильности в определенной мере зависит от условий внешней среды.

Отделом генетики растений за последние годы для условий Араратской равнины получен ряд гетерозисных гибридов, превосходящих районированные сорта по скороспелости и по урожайности. К сожалению, указанные гибриды широко не внедряются в производство, несмотря на Биологический журнал Армении, XXIV, № 2—3

то, что дополнительные расходы, связанные с производством гибридных семян, окупаются в несколько раз.

Для упрощения производства гибридных семян томатов мы задались целью использовать в качестве материнских форм линии, обладающие функционально-мужской стерильностью (ФМС). В 1964 г. из Майкопской опытной станции ВИР был получен ряд стерильных линий F_5 типа Джон-Бер. Предварительное испытание их в наших условиях показало, что наименьший процент завязывания плодов от самоопыления наблюдается у линии Джон-Бер \times Талалихин-186 F_5 .

За 1965—68 гг. у линий Джон-Бер \times Талалихин-186 F_5 проводили дальнейший отбор (до F_9) 100% стерильных растений с длинностолбчатыми цветками.

Фенологические наблюдения в течение 1968—69 гг. показали, что в условиях Араратской равнины на растениях Джон-Бер \times Талалихин-186 F_9 за месяц после массового цветения завязывания плодов от свободного самоопыления не наблюдается.

В более поздних фазах развития в зависимости от климатических условий года наблюдается единичное плодообразование от свободного самоопыления.

В выведенных нами скороспелых гетерозисных гибридах в качестве материнских форм в основном использовался скороспелый сорт Талалихин-186. С целью замены фертильного Талалихина-186 стерильной и для дальнейшего получения гетерозисных гибридов на стерильной основе было проведено сравнительное изучение гибридов томатов, полученных от фертильного Талалихина-186 и Талалихина-186, обладающего ФМС Джон-Бера.

Для установления наилучшего срока опыления цветков, обладающих ФМС, при котором рыльце находится в состоянии нормальной зрелости, мы провели опыление: в день цветения, на 3-й, 5-й, 7-й, 9-й и 11-й дни цветения. Опыление цветков сорта Талалихин-186 проводилось на предварительно кастрированных цветках, а на линии Талалихин-186 ФМС—без кастрации.

Данные табл. 1 показывают, что наилучшей фазой опыления как фертильных, так и стерильных цветков является 3-й день цветения. В этой фазе рыльце цветка у обеих форм находится в наиболее жизнеспособном состоянии, о чем свидетельствует повышенный процент (90—70) завязывания гибридных плодов. В следующих сроках опыления по мере увеличения возраста цветков наблюдается падение жизнеспособности цветка и соответственно процента завязывания гибридных плодов.

Из табл. 1 также видно, что процент завязывания гибридных плодов на растениях Талалихин-186 ФМС почти во всех вариантах опыления, по сравнению с растениями Талалихин-186, намного ниже. Так, в варианте опыления в день цветения этот процент на растениях Талалихин-186 составляет 80, а на растениях Талалихин-186 ФМС—65. Аналогичное наблюдается и в остальных вариантах. Уменьшение плодовитости стериль-

Таблица Влияние возраста фертильных и стерильных (ФМС) цветков на завязывание гибридных плодов в год скрещивания

Варианты опыления	Материнская форма	Количество опыленных цветков Количество завязав- шихов цветков 9/0 завязы-		
Опыление в день цветения	Талалихин-186 Талалихин-186 (ФМС)	40	32 26	80 65
Опыление на 3-й день цветения	Талалихин-186 Талалихин-186 (ФМС)	40 40	36 28	90 70
Опыление на 5-й день цветения	Талалихин-186 Талалихин-186 (ФМС)	40 40	34 16	85 40
Опыление на 7-й день цветения	Талалихин-186 Талалихин-186 (ФМС)	40	18 10	45 25
Опыление на 9-й день цветения	Талалихин-186 Талалихин-186 (ФМС)	40	4	10 10
Опыление на 11-й день цветения	Талалихин-186 Талалихин-186 (ФМС)	40 40	00 4	00 10

ных цветков по сравнению с фертильными, вероятно, связано с внутренними факторами, ответственными за ФМС.

Сравнительное изучение гибридов F_1 , полученных от фертильной и ФМС основ, показывает, что указанные группы гибридов как по скороспелости, так и по урожайности превосходят районированный станлартный сорт Маяк (табл. 2). Необходимо отметить, что гибриды, полученные на основе ФМС, по скороспелости намного отстают от гибридов, полученных на фертильной основе. Так, например, в гибридной комбинации Талалихин-186×Теситве ранний урожай за первую декаду плодоношения составляет 0,557 кг с одного растения, а у гибрида Талалихин-186 ФМС×Теситве—0,415 кг, превышая ранний урожай стандарта соответственно на 580,2 и 432,2%. То же самое наблюдается у остальных гибридов.

Указанные группы гибридов, по данным общего урожая, по сравнению с ранним, мало различаются друг от друга. Так, в среднем по 10 комбинациям F_1 , полученным на материнской форме Талалихин-186, превышение раннего урожая (при сравнении с сортом Маяк) составляет 500%; ранний урожай гибридов, у которых материнской формой является Талалихин-186 ФМС, превышение составляет 317,7%.

Перевес общего урожая указанных групп гибридов над стандартом соответственно составляет 146,0 и 152,5%.

Необходимо отметить, что по среднему весу плодов и высоте растений указанные группы гибридов также различаются.

Из приведенных данных видно, что комбинационная способность Талалихин-186 и Талалихин-186, обладающих ФМС, разная. По всей вероятности, при передаче ФМС Джон-Бера сорту Талалихин-186 сцеплен-

Урожайность и скороспелость гибридов томатов, полученных на фертильной и стерильной (ФМС) основах

и стерильной (ФМС) основах									
Гибридные комбинации	Ранний урожай за I декаду плодо- ношения		Общий урожай		вес, г	Высота растений,			
- поридиме комониции	с 1-го расте- ния, кг	0/0 K St	с 1-го расте- ния, кг	0/0 K St	Средний	Высота			
Маяк-St	0,096	100	2,17	100	104	69,8			
Талалихин-186 × Tecumshe	0,557	580,2	3,39	156,2	1	54,1			
Талалихин-186 (ФМС) $ imes$ Tecumshe	0,415	432,2	3,45	158,9	118	63,2			
Талалихин-186 × Одесский ранний	0,537	559,4	3,10	142,8	85	5 9,7			
Талалихин-186 (ФМС) × Одесский ранний	0,212	220,8	2,82	129,9	93	69,7			
Талалихин-186 🗙 Майкопский урожайный	0,253	263,5	3,21	147,9	98	59,8			
Талалихин-186 (ФМС) $ imes$ Майкопский урожайный	0,205	213,5	3,48	160,3	104	70			
Талалихин-186 × Cavaler	0,446	464,5	3,00	138,2	108	55,4			
Талалихин-186 (ФМС) × Cavaler	0,212	220,8	3,59	165,4	109	62,7			
Талалихин-186 × Молдавский ранний	0,500	520,8	2,97	136,8	82	53,9			
Талалихин-186 (Φ MC) $ imes$ Молдавский ранний	0,310	322,8	3,20	147,4	105	62,7			
Талалихин-186 × Эчмиадзин	0,290	305,2	3,02	139,1	98	62,7			
Талалихин-186 (ФМС) × Эчмиадзин	0,100	104,1	2,77	127,6		57,5			
Талалихин-186 × Притчард	0,400	416,6	2,99	137,7		58,6			
Талалихин-186 (ФМС) 🗙 Притчард	0,180	187,5	2,75	126,7		1 .			
Талалихин-186 × Victor	0,330	343,7	2,97	136,8		51,6			
Талалихин-186 (ФМС) × Victor	0,200	208,3	3,35	154,3					
Талалихин-186 × Невский	0,770	802,0	2,96	136,4		1 1			
Талалихин-186 (ФМС) × Невский	0,710	739,0	3,98	183,4	72	60,3			
Талалихин-186 × Сибирский скороспелый Талалихин-186 (ФМС) × Сибирский скоро-	, 0,720	757,8	3,31	152,5	80	57,33			
спелый	0,510	531,2	3,75	172,8	93	59, K			
В среднем получены на фертильной основе	0,480	500,0	3,15	146,0	88	56,8			
В среднем получены на основе ФМС	0,305	317,7	3,31	152,5	104	63,4			

но переходят и ряд других факторов, влияющих на хозяйственно-ценные признаки данного сорта.

Указанные факты дают основание заключить, что при производстве гетерозисных семян замена фертильных материнских сортов своими стерильными аналогами должна сопровождаться повторными испытаниями данных гибридов с целью уточнения комбинационных способностей последних.

Институт земледелия МСХ АрмССР

Գ. Ա. ՍԱՀԱԿՅԱՆ

ԱՐԱԿԱՆ ՖՈՒՆԿՑԻՈՆԱԼ ՍՏԵՐԻԼՈՒԹՅԱՆ ՕԳՏԱԳՈՐԾՈՒՄԸ ՏՈՄԱՏԻ ՀԵՏԵՐՈԶԻՍԱՅԻՆ ՍԵԼԵԿՑԻԱՅՈՒՄ

Ամփոփում

Տոմատի հիբրիդային սերմնաբուծության մեթոդների բարելավման հեշ ռանկարային պայմաններից մեկը համարվում է տարբեր ձևերի արական ֆունկցիոնալ ստերիլության օգտագործումը։

Մայրական ֆերտիլ ձևերը ստերիլներով փոխարինելու և հետագայում ստերիլության հիման վրա նոր հետերողիսային հիբրիդներ ստանալու նպա-տակով կատարված է ֆերտիլ և ստերիլ (ֆունկցիոնալ) հիմքերով ստացված հիբրիդների համեմատական ուսումնասիրություն։

Հիբրիդային զուգակցություններում որպես մայրական ձևեր օգտագործվել են ֆերտիլ Տալալիխին-186 սորտը և նրա Ջոն-Բերի տիպի ստերիլ անալոգը։

Պարզվել է, որ Տալալիխին-186 սորտի ֆունկցիոնալ ստերիլ անալոգը ընդՀանուր և սպեցիֆիկ կոմբինացիոն ունակուԹյուններով տարբերվում է ֆերտիլից։

Այդ մասին են վկայում ֆերտիլ և ստերիլ հիմջերով ստացված հիբրիդային բույսերի առման ու զարդացման, ինչպես նաև վաղ և ընդհանուր բերջատվության տարբերությունները։

Ստացված տվյալներից կարելի է հանգել այն եղրակացության, որ հիրրիդային սերմնաբուծությունում մայրական ֆերտիլ ձևերն իրենց ստերիլ անալոգներով փոխարինելու դեպքում անհրաժեշտ է տվյալ հիբրիդների կրկնակի ուսումնասիրություն՝ ստերիլ անալոգի կոմբինացիոն ունակությունը պարզելու նպատակով։

ЛИТЕРАТУРА

- 1. Алпатьев А. В. Гетерозис в овощеводстве. Изд. «Колос», Л., 1968.
- 2. Бабаджанян Г. А. Гетерозис в овощеводстве. Изд. «Колос», Л., 1968.
- 3. Брежнев Д. Д. Природа, 9, 1963.
- 4. *Брежнев Д. Д.* Вестник с/х наук, 8, 1964.
- 5. Брежнев Д. Д. Гетерозис, теория и практика. Изд. «Колос», 1968.
- 6. Жуковский П. М. Гетерозис, теория и практика, изд. «Колос», Л., 1968.
- 7. Загинайло Н. Н. Земледелие и животноводство Молдавии, 6, 1958.
- 8. Квасников Б. В. Выращивание овощей. М., 1959.
- 9. Окерберг Э. Гетерозис, теория и практика. Изд. «Колос», 1968.
- 10. Саакян Г. А. Народное хозяйство Армении, 8, 1966.
- 11. Саакян Г. А. Сборник научных трудов НИИЗ МСХ АрмССР, 1966.
- 12. Саакян Г. А. Всесоюзн. научно-технич. конф. по вопросу обеспечения овощами населения центральных и крупных городов страны, 19—21 мая 1966 г., Баку, 1968.
- **13**. Симонов А. А. Вестник с/х наук, 2, 1967.
- 14. Симонов А. А. Гетерозис в овощеводстве. Изд. «Колос», Л., 1968.
- **15.** Ткаченко Ф. А. Гибридное семеноводство овощных культур. Сельхозиздат, М., 1963.
- **16**. *Троничкова Е*. Международный с/х журнал, 3, 1960.
- 17. Троничкова Е. Гетерозис в овощеводстве. Изд. «Колос», Л., 1968.
- 18. Bullurd E. T. and Stevenson E. G. Proc. Am. Soc. hort. Sc., 61, 1953.
- 19. Hafen L. and Stevencon E. G. Proc. Am. Soc. hort. Sc., 67. 1956.
- D. Höjby H. R. South African Journal of Agricultural Science, 3, 1958.