T. XXII, № 9, 1969

УДК 576.8.095.58

3. Х. ДИЛАНЯН, Р. Қ. АРУТЮНЯН, К. В. МАҚАРЯН, А. А. АКОПЯН

ВЛИЯНИЕ РЕНТГЕНОВСКОГО ОБЛУЧЕНИЯ НА ПРОТЕОЛИТИЧЕСКУЮ И КИСЛОТООБРАЗУЮЩУЮ СПОСОБНОСТЬ НЕКОТОРЫХ ВИДОВ МОЛОЧНОКИСЛЫХ ПАЛОЧЕК

В литературе имеется много сообщений о воздействии ионизирующей радиации на микроорганизмы [1, 3] и в частности, на молочнокислые бактерии [4—12].

Этими работами установлено, что под влиянием облучения увеличивается степень изменчивости микроорганизмов. При этом подвергаются изменению, в той или иной степени, все свойства микроорганизмов, как культурно-морфологические, так и биохимические.

Однако в литературе мы не нашли данных о влиянии ионизирующей радиации на протеолитическую активность молочнокислых бактерий, хотя давно известно, что протеолитически активные расы молочнокислых микробов ускоряют созревание сыров [2].

Настоящая работа проведена с целью изучения влияния некоторых доз рентгеновского облучения на протеолитическую и предельную кислотообразующую способность некоторых видов молочнокислых палочек.

Методика. Облучению были подвергнуты 34 штамма гомоферментативных бактерий палочковидной формы. Видовой состав этих культур изрода Lactobacterium представлен в табл. 1.

Таблица 1 Видовой состав исследуемых культур

Название вида	Номера штаммов				
L. helveticum	2; 4-6; 8; 9; 24; 31; 50; 51; 52; 53; 57; 60; 64-66; 68; 71; 73; 74				
L. bulgaricum	1; 3; 10; 25; 26; 33; 58; 59				
L. acidophilum	21; 30; 54				
L. casei	7; 28				

Из приведенной табл. видно, что 21 штамм относится к виду **L.** helveticum, 8-L. bulgaricum, 3-L. acidophilum и 2-L. casei.

Рентгеноблучение производили аппаратом РУМ-II в секторе радиобиологии Минздрава АрмССР при следующих условиях: напряжение 200 кв., сила тока 15 mA, фокусное расстояние 19 см, фильтр Си—0,5 мм, мощность дозы — 360 р. в мин. Было исследовано влияние дозы 36 и 54 тыс. р. Исследуемые штаммы поддерживались на обезжиренном молоке; пересевали их через каждые 10—15 дней. Перед облучением пересевали в пробирки-малютки (емк. 1 мл) с обратом и ставили в термостат при 35°С до свертывания. Полученные однодневные культуры подвергались облучению, после чего кисломолочные сгустки разбавлялись 10^{-5} , 10^{-6} , 10^{-7} стерильной водой, а затем засевали в чашки Петри с питательным агаром из гидролизованного обезжиренного молока, приготовленного по Скородумовой [14].

Для отбора наилучших рентгенмутантов-кислотообразователей в питательную среду прибавлялось 3% мела, а для выявления протеолитически активных рентгенмутантов к питательному агару прибавлялось 20% стерильного обезжиренного молока. Таким образом, на средах с мелом и молочным агаром выделялись колонии, которые образовывали вокруг себя наибольшие зоны просветления. В дальнейшем выделенные колонии отвивались в обезжиренное молоко и изучались многократно количественными методами по протеолитической активности и на предельную кислотообразующую способность. С этой целью зараженное исследуемым микробом молоко выдерживали при 35° в течение 7 дней. По истечении указанного срока к 5 мл образовавшегося кисломолочного сгустка добавляли 10 мл дистиллированной воды и 2—3 капли 2%-ного раствора фенолфталенна и титровали 0,1N NaOH до ярко-розовой окраски. Количество миллилитров щелочи, израсходованное на титрование, умножали на 20, что показывало кислотность в градусах. Затем в эту же пробу добавляли 0,5 мл формалина, нейтрализованного по фенолфталеину (до розовой окраски). Пробу титровали 0,1N NaOH до первоначальной розовой окраски. Количество миллилитров щелочи, израсходованное на титрование после добавления формалина и умноженное на 20, показывало содержание аминного азота в градусах. Контролем служило то же молоко, но не зараженное микробом.

Плотность кисломолочного сгустка, образуемого исследуемым штаммом, определяли с помощью консистометра, описанного Мещеряковым [13]. Вкус и запах определялись органолептически.

Результаты и их обсуждение. Из 34 исследуемых штаммов только 17 после облучения дозой 36 тыс. р на плотной избирательной среде с молочным агаром дали 88 колоний, которые образовывали вокруг себя зоны просветления, а после 54 тыс. р—28 штаммов дали 130 колоний со значительной зоной просветления. Однако в дальнейшем после многократных пересевов и изучения протеолитической активности количественным методом только 14 рентгенмутантов из 88 стойко сохранили высокую протеолитическую активность, а от облучения 54 тыс. р из 130 рентгенмутантов—только 16. Эти мутанты приведены в табл. 2.

Кислотообразующая способность исследуемых штаммов от тех же доз облучения, как это видно из табл. 3, оказалась более консервативной к действию облучения, чем прогеолитическая. После двух доз облучения было выявлено всего 7 рентгенмутантов, оказавшихся более активными по кислотообразующей способности, чем их необлученные штаммы.

Таблица 2
Накопление аминного азота в молоке при развитии в нем в течение 7 суток протеолитически наиболее активных рентгенмутантных штаммов

Лозы облучения

дозы обмучения								
36 тыс. р			54 тыс. р					
Номера рентген- мутантов*	АКТИВНОСТЬ ПТАММОВ ДО Облучения	втока мутантов мутантов	Во сколько раз усилилась актив- ность штамма после облучения	Номера рентген- мутантов*		втов Активность ниме рентген мутантов	Во сколько раз усилилась актив- ность штамма после облучения	
5/1 7/1 9/2 24/3 31/1 50/6 51/4 51/5 51/10 52/10 53/2 53/4 53/6 53/8	3 3 2 4 7 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	12 14 17 19 15 14 14 18 15 13 15 13 14	4,00 4,67 8,50 4,75 2,14 2,33 3,50 4,50 3,75 4,33 3,75 3,25 3,50 3,50	4/1 5/3 5/4 6/8 7/3 8/1 9/1 9/5 25/5 28/2 50/5 54/1 54/3 71/5 73/1 73/2	7 3 3 4 3 5 2 2 2 4 6 3 3 6 4 4	12 14 13 14 13 13 16 11 11 15 14 15 12 14	1,71 4,00 4,67 3,25 4,67 2,60 6,50 8,00 5,50 2,75 2,50 4,67 5,00 2,50 3,00 3,50	

* В табл. 2 и 3 числа, стоящие в числителе—номера рентгенмутантов, указывают номер его штамма до облучения.

Полученные данные представляют большой практический интерес и говорят о том, что под влиянием испытуемых доз у некоторых рентгенмутантов наблюдаются изменения как в протеолитической, так и в кислотообразующей функциях. Хотя у подавляющего большинства рентгенмутантов, предварительно выделенных качественным методом на плотных определении количественным методом избирательных средах, при была установлена слабая протеолитическая и кислотообразующая функции или не превышающие исходную величину (таких было большинство) или утеря приобретенного положительного качества через несколько пересевов; нам, однако, удалось получить 30 рентгенмутантов с усиленной протеолитической и 7 с усиленной кислотообразующей функиней, которые сохранили эти свойства при многократных пересевах. При**чем**, если по кислотообразующему свойству отобранные рентгенмутанты усилили свою активность по сравнению со своими необлученными штам**ма**ми на 35—81 %, то по протеолитическому—от 1,7 до 8,5 раза.

Наибольшее усиление кислотообразующей функции было отмечено у тех штаммов культур L. helveticum и L. bulgaricum, максимальная кислотность которых до облучения колебалась в пределах 172—240°T.

Таблица 3 Предельная кислотообразующая способность некоторых ренгеимутантных штаммов

Доза облу- чения	Номера мутантов*	Кислотность исходного штамма (до облучения)	На сколько ⁰ / ₀ увеличилась ак-	
		в градусах Те	тивность штамма после облучения	
36 тыс. р	3/1	240	324	35,0
	5/1	200	305	52,5
	9/2	193	283	46,0
	24/3	183	293	60,0
	31/1	172	312	81,0
54	2/ 7	196	311	59,0
	6/8	201	309	54,0

После облучения у наиактивнейших их рентгенмутантов кислотность доходила до 238°—324°, что приближало их к наиактивнейшим штаммам этих видов по данному признаку.

Наибольшее же усиление протеолитической способности наблюдалось у штаммов со сравнительно низкой и средней активностью до облучения (2—7° аминного азота). После облучения у наиактивнейших их рентгенмутантов величина протеолитической способности достигла до 14°—19°, что на 30—50% выше, чем у наиактивнейших штаммов, которыми мы располагали до облучения.

Как видно из табл. 2 и 3, существенной разницы в величине кислотообразующей и протеолитической активности в зависимости от примененных доз облучения и вида культуры у рентгенмутантов не наблюдалось.

Кисломолочные сгустки, образуемые отобранными рентгенмутантами, были ровные, плотность их колебалась в пределах 1,0—1,6 г/см². Вкус и запах были чистыми молочнокислыми. Поэтому они могут быть рекомендованы для включения в состав бактериальных заквасок некоторых видов сыров и кисломолочных продуктов.

Ереванский зооветеринарный институт

Поступило 12.И 1968 г.

Ձ. Ք. ԳԻԼԱՆՅԱՆ, Ռ. Կ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Կ. Վ. ՄԱԿԱՐՅԱՆ, Հ. Հ. ՀԱԿՈՐՅԱՆ

ՌԵՆՏԳԵՆՅԱՆ ՃԱՌԱԳԱՅԹԱՀԱՐՄԱՆ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ԿԱԹՆԱԹԹՎԱՅԻՆ ՅՈՒՊԻԿՆԵՐԻ ԹԹՎԱԳՈՅԱՑՄԱՆ ԵՎ ՊՐՈՏԵՈԼԻՏԻԿ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԻ ՎՐԱ

Ամփոփում

L. helveticum, L. acidophilum, L. bulgaricum և L. casei բակտերիալ կուլտուրաների ճառագայթահարումը 36 և 54 հազար ռենտգեն դողաներով հնարավոր է դարձրել առանձնացնելու այնպիսի ռադիոմուտանաներ, որոնք իրենց չճառագայթահարված շտամների համեմատությամբ հակվել են դեպի թթվագոյացման և պրոտեոլիտիկ ֆունկցիայի մեծացման կողմը։

Ըստ Թիվագոյացման ցուցանիշի ընտրված ռադիոմուտանտները իրենց ակտիվությունը ավելացրել են 35—81%, իսկ պրոտեոլիտիկ ցուցանիշով ընտրրվածները՝ Համարյա քառապատկել (1,7—8,5 անգամ)։ Ճառագայթահարումից հետո ինչպես պրոտեոլիտիկ, այնպես էլ Թիվագոյացման հատկությունների առավել ակտիվացում նկատվել է Թույլ և միջին ակտիվությամբ
օժտված շտամների մոտ։ Այդ պատճառով էլ ճառագայթահարումից հետո
ամենաակտիվ ռադիոմուտանտների թթվագոյացման ընդունակությունը միայն մոտեցել էր, իսկ պրոտեոլիտիկ ակտիվության մեծությունը, 30—50%-ով
դերազանցել ճառագայթահարումից առաջ մեր տրամադրության տակ գտնվող
լավագույն շտամներին։

Ճառադայթահարման դողաների մեծությունը առանձնացված ռադիոմուտանտների թվագոյացման և պրոտեոլիտիկ ակտիվության վրա էական աղդեցություն չի ունեցել։ Ուսումնասիրված ռադիոմուտանտներից լավագույն հատկություններով օժտված շտամները մտցվել են կաթնաթթվային մթերքների ու տեղական պանիրների համար պատրաստվող բակտերիալ մակարդների կազմի մեջ և ենթարկվում են արտադրական փորձարկման։

ЛИТЕРАТУРА

- 1. Алиханян С. И. Труды ин-та микробиологии АН СССР, вып. 10, 46-58, 1961.
- 2. Богданов В. М. Молочная промышленность, 5, 15—18, 1935.
- 3. Гальцова Р. Д., Мейсель М. Н. и Селиверстова Л. А. ДАН СССР, 98, 6, 1013—1016, 1954.
- 4. Гриневич А. Г. ДАН Уз. ССР, 10, 56—59, 1961.
- Гриневич А. Г. Почвенная и с. х. микробиология, Ташкент, АН УзССР, 136—143, 1963.
- 6. Гриневич А. Г. Узбекский биологический журнал, 1, 27—34, 1962.
- 7. Гриневич А. Г. Вопросы микробиологии, Ташкент, «Наука», 98—104, 1966.
- 8. Гриневич А. Г., Огай Д. Уз. биологический журнал АН УзССР, 1, 7—12, 1964.
- Гриневич А. Г., Пантюхина Е. Л. Уз. биологический журнал, АН УзССР, 5, 3—10, 1960.
- Гриневич А. Г., Талинов Б. Т. Уз. биологический журнал, АН УзССР, 4, 62—67, 1963.
- 11. Мазюкевич В. А., Фальк Е. Ю., Епифанова М. Г. Труды Всесоюзного н. и. института жиров, 24, 171—181, 1963.
- 12. Макарян К. В., Тер-Казарьян С. Ш. Вопросы рентгенологии и онкологии, т. 9, 369—379, Ереван, 1966.
- 13. Мещеряков В. Т. Автореферат канд. диссертации «Исследование технологических условий интенсификации производства сметаны и улучшения ее консистенции», Москва, 1963.
- Скородумова А. М. Практическое руководство по технической микробиологии молока и молочных продуктов. Москва, Пищепромиздат, 29—30, 1963...