т. X X I I, № 9, 1969

УДК 591.3:591.81

С. Р. МАКАРЯН, Ю. А. МАГАКЯН

О ПАРАМЕТРИЧЕСКИХ ЗАВИСИМОСТЯХ РАЗМЕРОВ КАРИО-И ЦИТОПЛАЗМЫ КЛЕТОК В ГИСТОГЕНЕЗЕ ЭМБРИОНАЛЬНОЙ ПЕЧЕНИ

Величина клеток и ядер и факторы, определяющие их размеры, в течение многих лет привлекают к себе внимание исследователей [1, 7, 20, 24, 26, 29, 33, 39, 45 и др.] Первоначальное представление о постоянстве клеточных размеров, выдвинутое в свое время Дришем [29], было в дальнейшем пересмотрено в связи с накоплением данных о значительных изменениях размеров клеток и ядер как в процессе нормального развития организма [1, 2, 4, 8, 15, 16, 20 и др.], так и в экстремальных условиях [3, 9, 21, 34 и др.]. Были выявлены некоторые особенности в динамике клеточных размеров и объемов ядер, что позволило Вермелю [1, 2] сформулировать закон о «постоянстве минимальной величины клеток» и их «тенденции к увеличению своих размеров», а Хесину [20] развить представления о функциональном и дезинтегративном «набухании и сморщивании» ядер.

Не меньший интерес представляет и проблема взаимоотношений размеров ядра и цитоплазмы. Выдвинутая в начале века Гертвигом [36, 37], она получила дальнейшую разработку в многочисленных исследованиях [1, 20, 30, 44, 48]. Многими из них было показано, что ядерно-плазменное отношение остается более или менее постоянным в процессе роста организма [26, 38, 42, 49 и др.]. Однако последующие работы Иверсена [41], Дика [28], Романовой [18], Рябининой [19] и др. выявили изменения в ядерно-плазменных отношениях при регенерации ткани, в культуре, в эмбриогенезе и т. д. Наконец, работы Щелкунова [22], Ивановой [5], Клишова [6] и др.показали, что и в процессе дифференцировки также наблюдается динамика ядерно-плазменных отношений и что их показатели могут служить даже признаком, характеризующим степень «дифференцированности» клеток.

Ранее нами было показано, что генотипические факторы, находящие свое отражение в характере развития эмбрионов различных видов уток [11], оказывают существенное влияние и на морфофункциональную дифференцировку их печени [13, 14].

В связи с изложенным представлялось интересным сравнительное исследование размеров клеток и ядер, а также показателей ядерно-плазменного отношения их, в дифференцирующейся печени эмбрионов двух видов уток — мускусной, обладающей длинным периодом эмбриогенеза

(34—35 суток), и пекинской, более скороспелой с коротким эмбриональным развитием (28 суток).

Клетки печени исследовали на 8, 12, 17 и 25 сутки эмбриогенеза и при вылуплении утят. Материал фиксировали в жидкости Буэна. Парафиновые срезы (4 мк) окрашивали по Поссу и Флэгерти [46]. Проекции клеток и ядер оконтуривали на бумаге стандартной толщины и вырезанные кусочки взвешивали на аналитических весах. Полученные данные выражали в условных сравнимых единицах и обрабатывали статистически. Этот метод в свое время применил Годлевский [32], а затем его широко использовали Гайберг [35], Пашкова [17], Шелкунов [23] и др. Проверочные вычисления [6] показали, что метод взвешивания дает в принципесходные результаты и не менее точные данные в сравнении с методом определения объемов ядер и клеток на основании измерений и расчетов по формулам. Естественно, что при этом необходимо произвести большое число определений, поэтому для каждого случая взвешивали по 230—250 ядер и клеток от 3 одновозрастных эмбрионов. Указанное количество намного превышало необходимый объем выборки.

Показатель ядерно-плазменных отношений определяли по формуле

$$Q = \frac{S_n}{S_c - S_n},$$

где S_n — размеры ядра, а S_c — размеры клетки.

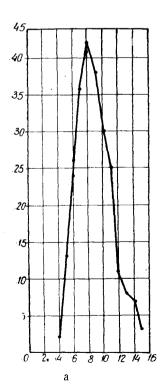
Результаты определений сведены в приводимую ниже таблицу (таблица), из которой видно, что в процессе гистогенеза печени эмбрионов обоих видов уток происходят существенные изменения в размерах гепатоцитов, величине их ядер и в показателях ядерно-плазменного отношения.

На протяжении всего исследованного периода развития эмбриональной печени значительно увеличиваются размеры клеток, величина же ядер, напротив, уменьшается, взаимозависимо обусловливая уменьшение показателей ядерно-плазменного отношения.

Рядом авторов был описан процесс уменьшения в ходе эмбриогенеза средних размеров ядер клеток спинальных ганглиев [25, 27, 43, 44], клеток печени и поджелудочной железы [28, 31, 42, 47], клеток соматической мускулатуры и нервных клеток [6]. Эти же авторы отмечали, что процесс уменьшения размеров ядер не сопровождается пропорциональным уменьшением размеров всей клетки, следствием чего является увеличение плазменно-ядерного отношения.

Таким образом, наши данные подтверждают сведения, полученные ранее о том, что между степенью специализации (дифференцировки) клетки и уровнем отношения массы цитоплазмы к массе кариоплазмы существует зависимость, определяемая ходом процесса дифференцировки.

Действительно, резкое увеличение преобладания цитоплазмы над ядром в клетках печени утиных эмбрионов связано с активацией их гли-когенообразовательной функции, которая приходится на начало плодного периода [13].


Биологический журнал Армении, XXII, № 9-2

Уменьшение средних размеров ядер гепатоцитов хорошо согласуется также и с уменьшением средних количеств ДНК, приходящейся на одно ядро, что, по мнению Магакяна [10, 12], обусловлено сокращением относительного количества полиплоидных клеток в развивающихся эмбриональных тканях с возрастом.

Таблица Изменение размерных параметров гепатоцитов в эмбриогенезе пекинской и мускусной уток

Возраст эмбрио- нов, сут-	Пекинская утка			Мускусная утка		
	размер ы		показатели ядерно-плаз-	размеры		показатели ядерно-плаз-
	клеток	ядер	менных от- ношений	клеток	ядер	менных от- ношений
8 12 17 25 28 .34—35	$23,8\pm0,32$ $24,2\pm0,42$ $29,0\pm0,52$ $35,5\pm0,65$ $37,0\pm0,61$	$8,49 \pm 0,16$ $7,96 \pm 0,16$ $7,10 \pm 0,14$	0,577±0,015 0,452±0,011 0,404±0,010 0,253±0,009 0,325±0,009	$28,4\pm0.53$ $30,9\pm0.52$ $30,9\pm0.59$ $33,1\pm0.55$ $38,1\pm0.62$ $39,1\pm0.74$	$10,76 \pm 0,18$ $8,05 \pm 0,16$ $7,06 \pm 0,12$ $5,81 \pm 0,09$	0,723±0,023 0,665±0,018 0,415±0,015 0,285+0,007 0,187±0,004 0,199±0,006

Примечание: все данные в условных сравнимых единицах.

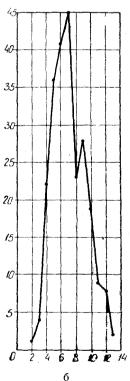


Рис. 1. Вариационная кривая размеров ядер печени эмбрионов пежинской утки на 8 (а) и 28 (б) сутки. По оси абсцисс — размеры ядер, ординат — частота встречаемости.

Интересно, что процесс изменений размерных показателей гепатоцитов у эмбрионов пекинской и мускусной уток, несмотря на общие тенденции, идет не совсем идентично, согласуясь с генотипическими факторами. Так, величина клеток печени эмбрионов пекинской утки за более короткий период (8—28 сутки) увеличивается в 1,55 раза, в то время как у эмбрионов мускусной утки за время с 8 по 34—35 сутки величина клеток

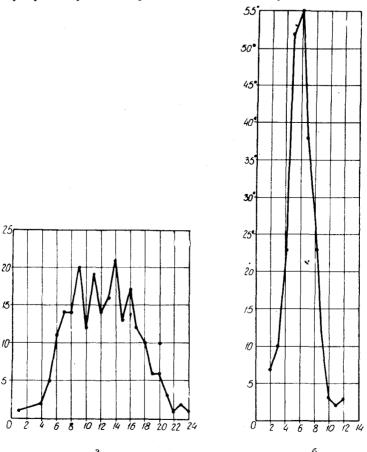


Рис. 2. Вариационная кривая размеров ядер печени эмбрионов мускусной утки на 8 (а) и 4 (б) сутки. Остальные обозначения те же, что и на рис. 1.

возрастает лишь в 1,38 раза. Размеры же ядер за тот же отрезок времени соответственно уменьшаются в 1,33 и 2,05 раза, что отражается специфическим образом и на ядерно-плазменном отношении. Последнее у пекинских эмбрионов, уступая в начале исследованного периода мускусным, оказывается большим к моменту вылупления.

Необходимо отметить, что такой же видоспецифический характер проявляется и в показателе эксцессивности (или высоковершинности) распределения эмпирических данных по величине ядер. Еще Вермелем [1, 2] и Новиковым [16] было отмечено, что ядра менее дифференцированных клеток имеют кривую распределения, близкую к нормальной, в то

время как в процессе дифференцировки все более выявляется «эксцесс» вариационной кривой. Наши данные, подтверждая это наблюдение (рис 1, 2), свидетельствуют также и о том, что у эмбрионов мускусной утки эксцессивность вариационной кривой размеров ядер проявляется позже, чем у более быстро развивающихся эмбрионов пекинской утки.

Изложенное позволяет сделать несколько обобщений. Прежде всего о том, что параметрические зависимости размерных показателей клеток, отражая процессы их морфофункциональной дифференцировки, могут служить критериями при сравнении степени специализации в развитии органа или ткани. Наряду с этим они могут быть использованы при сравнительном анализе действия генотипических факторов («проявления генов»), определяющих специфический характер процесса развития эмбрионов того или иного вида животных. Наличие связи между степенью специализации клетки и ее ядерно-плазменным отношением позволяет предполагать, что суть этой зависимости заключается в увеличении относительного (в нашем случае абсолютного) объема цитоплазмы за счет развития в ней различных молекулярных структур, выполняющих специальные функции в дифференцированных клетках. Однако этот вопрос в силу своей недостаточной изученности требует дальнейшего разрешения.

Институт зоологии АН АрмССР

Поступило 10 III 1969 г.

Ս. Ռ. ՄԱԿԱՐՅԱՆ, Յու. Հ. ՄԱՂԱՔՅԱՆ

ԼՅԱՐԴԻ ՀԻՍՏՈԳԵՆԵԶՈՒՄ ԲՋԻՋՆԵՐԻ ԿՈՐԻԶԱ–ԲՋՋԱՀՅՈՒԹԱՅԻՆ ՉԱՓՍԵՐԻ ՊԱՐԱՄԵՏՐԻԿ ԿԱԽՎԱԾՈՒԹՅԱՆ ՄԱՍԻՆ

Ամփոփում

Աշխատության մեջ որոշվել են լյարդի բջիջների և կորիզների չափսերը, ինչպես նաև կորիզա-բջջահյութային հարաբերությունը պեկինյան ու մշկա-բադերի սաղմնային զարգացման 8, 12, 17, 25-րդ օրերին և ձվից դուրս գալու ժամանակ։ Ցույց է տրված, որ լյարդի հիստոդենեզն ուղեկցվում է բջիջների չափսերի մեծացմամբ և կորիզների նվազմամբ, որի հետևանքով փոքրանում են կորիզա-բջջահյութային հարաբերության ցուցանիշները։ Որոշված է նաև բջիջների մասնագիտացման աստիճանի և նրանց կորիզա-բջջահյութային հարաբերության միջև կապի առկայությունը։ Հավանական է, վերջինիս առկայությունը հետևանք է բջջահյութի ծավալի մեծացման ի հաշիվ բջջում ղարգացուն ընթանում են ոչ նույնակերպ՝ առաջինների մոտ լյարդի բջիջների չափսերը մեծանում են ոչ նույնակերպ՝ առաջինների մոտ, հարաբերակըցվելով պեկինյան բադերի լյարդի զարգացման ավելի բարձր ինտենսիվութիլան հետ։

ЛИТЕРАТУРА

- 1. Вермель Е. М. В сб. Рост животных, 107, Биомедгиз, 1935.
- 2. Вермель Е. М. Уч. зап. Московск, гос. пед. ин-та, 25, 1, 1940.
- 3. Вибе К. Г. Цитология, 3, 2, 1961.
- 4. Гундобин Н. П. Особенности детского возраста. С.-Петерб., 1906.
- 5. Иванова В. Ф. Архив анат., гистол. и эмбриол., 44, 10, 1963.
- 6. Клишов А. А. Архив анат., гистол. и эмбриол., 47, 8, 1964.
- 7. Кравченко А. И. Изменение ядерных (клеточных) размеров в процессе эмбриогенеза Triton taeniatus L., Дисс. М., 1947.
- 8. Кравченко А. И. Архив анат., гистол. и эмбриол., 47, 7, 1964.
- 9. Лунц А. М. Бюлл. экспер. биол и мед., 21, 1—2, 1946.
- Магакян Ю. А. В сб. Вопросы биофизики и теоретич. биологии, Тбилиси, 3, 1969 (в печати).
- 11. Магакян Ю. А., Макарян С. Р. Известия АН АрмССР (биол. науки), **14,** 12, 1961.
- 12. Магакян Ю. А., Маркарян Р. Н., Петросян А. В. Цитология, 11, 3, 1969.
- 13. Макарян С. Р. Известия АН АрмССР (биол. науки), 18, 9, 1965.
- 14. Макарян С. Р. Зоологический сб., Тр. Зоол. ин-та АН АрмССР, 14, 133, 1966.
- Мильман М. С., Левина И. С. Журн. теорет. и практич. мед., Баку, 1, 1—2, 1924.
- 16. Новиков М. Б. Тр. Астраханск. гос. мед. ин-та, 11, 109, 1954.
- 17. Пашкова В. С. Тр. Крымского мед. ин-та, Симфер., 20, 190, 1958.
- 18. Романова Л. К. Тр. МОИП, отд. биол., 2, 121, 1961.
- 19. Рябинина З. Л. В сб. Регенерация и клеточи, размиож, у животных, М., 56, 1964.
- 20. Хесин Я. Е. Размеры ядер и функциональное состояние клеток. М., 1967.
- 21. Шувалова Т. А. Уч. зап. Ленингр. гос. пед. ин-та, 110, 75, 1955.
- 22. Щелкунов С. И. Архив анат., гистол. и эмбриол., 42, 6, 1962
- 23. Щелкунов С. И. Архив анат., гистол, и эмбриол., 44, 5, 1963.
- 24. Boveri Th. Zellenstudien, Heft V, Jena, 1905.
- 25. Busacca A. Arch. ital. di anat. e di embryol., 15, 265, 1916.
- 26. Clara M. Z. mikr, anat. Forscht, 22, 145, 1930.
- 27. Cruz A. R., Lison L. Compt. rend. Acad. Sci., (Paris), 245, 21, 1957.
- 28. Dick D. A. T. Nature, 177, 4501, 1956.
- 29. Drisch H. Ergebn, d. Anat. u. Entwicklungsgesch., 8, 697, 1899.
- 30. Erd mann Rh. Ergebn. d. Anat. u. Entwicklungsgesch., 18, 844, 1910.
- 31. Franzini C., Sorrentino R., Mezzetti P. Tumori, 40, 4, 1954.
- 32. Godlewski E., Jr. Roux' Archiv Entwicklungsmech., 30, 81, 1910.
- 33. Hamburger V. Am. Scientist, 45, 1957.
- 34. Hartmann M. Allgemeine Biologie, Jena, 1933.
- 35. Heiberg K. A. Z. Krebsforschung, 30, 60, 1929.
- **36.** Hertwig R. Biol. Zentralbl., **23**, **2**–3, 1903.
- 37. Hertwig R. Archiv Zellforsch., 1, 1, 1908.
- 38. Jacoby W. Roux' Archiv Entwicklungsmech., 106, 124, 1925.
- 39. Jacoby W. Z. mikr.-anat. Forsch., 38, 161, 1935.
- 40. Jacoby W. Roux' Archiv Entwicklungsmech., 141, 584, 1942.
- 41. Iversen S. Acta anat., 27, 4, 1956.
- 42. Iversen S., Thamsen A. Acta pathol. et microbiol. Scand., 38, 2, 1956.
- 43. Levi G. Arch. ital. di anat. e di embryol., 7, 1908.
- 44. Levi G. Ergebn, d. Anat. u. Entwiclungsgesch., 26, 87, 1925.
- 45. Painter T. S. J. Exptl Zool., 50, 3, 1928.
- 46. Poss M. H., Flaharty I. M. Stain Technol., 35, 6, 1960.
- 47. Sorrentino R. Ricerca Sci., 26, 1, 1956.
- 48. Trombetta V. Bot. Rev., 8, 5, 1942.
- 49. Voss H. Z. Zellforsch., 7, 2, 1928.