20340406 002 ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԿԵՄԻԱ։ ՀԱՅԱՍՏԱՆԻ ԿԵՆՍԱԲԱՆԱԿԱՆ ՀԱՆԴԵՍ АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР. БИОЛОГИЧЕСКИЙ ЖУРНАЛ АРМЕНИИ

т. XXII, № 7, 1969

УДК 577.3**7**

г. л. арешян, л. к. нерсесян, к. а. шагинян

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ НЕРВНОЙ КЛЕТКИ (СТАНДАР**Т**НОГО НЕЙРОНА)

Основываясь на известные данные современной физиологии и теории проведения нервного импульса по нервному волокну [1—7], разработана математическая модель нервной клетки.

Предлагаемая модель распространения возбуждения от синаптической бляшки через сому клетки и по аксону к синаптическим бляшкам того же аксона включает разные участки, которые рассмотрим, предварительно выбрав системы отсчета.

Геометрия, координаты, время. Поверхность сомы клетки считаем правильной сферой радиуса R. Прямоугольную систему координат располагаем в центре сферы. Пользуясь сферическими координатами, будем отсчитывать азимутальный угол от оси X-ов. Широтный угол θ будет углом, составленным с осью Z.

Задавшись шагом квантования поверхности сферы ω (в градусах центрального угла), разбиваем всю сферу на точки $\{x_i, y_i, z_i\}$ так, чтобы любые две соседние точки отстояли друг от друга на величину, близкую принятому шагу квантования.

Такие точки назовем узлами сферы. Например, задавшись $\omega = 10^{\circ}$, получаем на сфере 430 узлов.

Разбивка сферы производится выделением широтных окружностей (отстоящих друг от друга на шаг квантования), а затем выделением узлов на каждой данной широтной окружности (рис. 1).

Принимаем одну из окружностей у южного полюса (x = 0, y = 0, Z = -R) за геометрическое место, откуда начинается аксон. Узлы этой окружности назовем точками аксонного холмика. Сам аксон будем считать цилиндром с неизменным радиусом и длиной L.

Системы кординат для аксона — одна координатная ось с нулевым отсчетом в начале аксона (рис. 2).

Текущее время $t = \tau k$, где τ — квант времени, $k = 1, 2, 3, \cdots$ такты.

Синаптические бляшки. Каждая синаптическая бляшка приписывается к какому-либо узлу (кроме узлов, относящихся к аксоновому холмику). Такие узлы назовем синаптическими.

Синаптический q-ый узел, получив определенную порцию медиатора «N_q, начинает генерировать ток во всех направлениях. Мощность залпа синаптической бляшки учитывается числом N_q выброшен-

Математическая модель нервной клетки

Рис. 1. Разбивка сферы на узлы: 1 — окружность, от которой начинается аксон, 2 — узел сферы, 3 — узел аксонного холмика.

яных квантов медиатора α. Для разных синапсов N_q различно. Распад медиатора учитывается экспоненциальной зависимостью. Для величины плотности тока q-го синаптического узла к моменту времени получаем выражение

$$\delta_{q}(\mathbf{k}) = CN_{q} \alpha e^{-a_{c}\tau (\mathbf{k} - \mathbf{k}_{q})} \times U(\mathbf{k} - \mathbf{k}_{q}).$$
(1)

(Приложение 1).

Данная синаптическая бляшка может производить выброс различного количества медиатора многократно в различные моменты времени. Для учета этого зададимся последовательностью величин:

1. Моментов времени k_{q1}, k_{q2} · · · и

2. Соответственно им числа квантов медиатора - Nq1, Nq2 · · ·

Общий эффект рассчитывается суммированием выражений (1), взятых для соответствующей последовательности.

В случае необходимости учета спонтанного выделения медиатора бляшки в спокойном состоянии необходимо величины K_{qi} и N_{qi} определять с помощью выборки случайных чисел.

При необходимости учета гипотезы о тормозящих синапсах достаточно в ур. (1) ввести минусовый знак.

Возбуждение и отдых несинаптических узлов. Принимаем, что любой узел (кроме синаптического) обладает следующими свойствами: Биологический журнал Армении, XXII, № 7-22

17

a) узел возбуждается и в следующий такт начинает генерироватьток во всех направлениях, если плотность тангенциальной составляющей тока от всех остальных возбужденных узлов (в том числе и синаптических) достигает или превышает в рассматриваемом узле пороговые значения h;

Рис. 2. Координаты аксона: 1 — окружность на сфере, от которой начинается аксон, 2 — бляшка, 3 — узлы сферы.

 б) величина генерируемого тока с течением времени спадает поэкспоненциальному закону:

$$\delta_b'(\mathbf{K}) = \delta_0 e^{-a_b \tau (\mathbf{k} - \mathbf{k}_b)} \times U(\mathbf{k} - \mathbf{k}_b)$$
(2)

где δ_0 — начальная амплитуда, одинакова для всех узлов клетки;

 аь — величина, обратная постоянной времени затухания (за исключением синаптических);

Кь — такт начала генерации;

в) в момент времени K = K₃, при котором величина δ_b (K зат.) становится равной или меньше заданной малой величины ε (расчетный нуль), узел переходит из состояния возбуждения в состояние отдыха;

г) длительность отдыха задается величиной Кот. Повторное возбуждение возможно только для $K \gg K_{3ar} + K_{or}$ при соблюдении условия (a);

д) величина порога h узла P в данный такт времени является функцией радиальной составляющей плотности тока $\partial_R(K, P)$ (ур. 12) от всех остальных возбужденных узлов (в том числе и синаптичес-ких), вычисленных для того же такта времени.

В наиболее простом частном случае h = const.

Эффект изменения величины порога в локальном узле учитывается введением, например, следующей функциональной зависимости

$$\mathbf{h} = \mathbf{f} \left[\delta_{\mathbf{R}} \left(\mathbf{K}, \mathbf{P} \right) \right]. \tag{3}$$

При наличии тормозных синапсов изменение порога, например, можно задать условием:

$$h = \begin{cases} h_{max} & \pi p \mu & \delta_R > 0 \\ h_{min} & \pi p \mu & \delta_R \leqslant 0 \end{cases}$$

Распространение возбуждения. Пусть узел Q с координатами: $\{x_Q, y_Q, z_Q\}$ в момент K_Q начал генерацию, и к моменту K величина.

18

этого тока равна $\delta_Q(K)$. Узел Q может быть синаптическим узлом, в этом случае $\delta_Q(K)$ вычисляется по уравнению (1). Узел Q может быть обычным — в этом случае $\delta_Q(K)$ вычисляется по уравнению (2). Тогда составляющие плотности тока для узла $P\{x_P, y_P, z_P\}$ от узла Q будут равны:

широтная составляющая --

$$\delta_{\theta} (\mathbf{K}, \mathbf{P}, \mathbf{Q}) = \frac{F_{\mathbf{Q}}(\mathbf{K})}{\mathbb{R}^{2} V \overline{x_{p}^{2} + y_{p}^{2}} \sin \theta_{\mathbf{P}\mathbf{Q}}} \left[-x_{p} z_{p} x_{\mathbf{Q}} - y_{p} z_{p} y_{\mathbf{Q}} + (x_{p}^{2} + y_{p}^{2}) Z_{\mathbf{Q}} \right] \times \\ \times U \left[(\mathbf{K} - \mathbf{K}_{\mathbf{Q}}) - \frac{\theta_{\mathbf{P}\mathbf{Q}}}{\theta_{\mathbf{V}}} \right]$$
(4)

азимутальная составляющая —

$$\delta_{\varphi}(K, P, Q) = -F_{Q}(K) \frac{-x_{P} y_{Q} + y_{P} k_{Q}}{R \sqrt{x_{P}^{2} + y_{P}^{2}} \sin \theta_{PQ}} \times U\left[(K - K_{Q}) - \frac{\theta_{PQ}}{\theta_{v}}\right]$$
(5)

радиальная составляющая —

$$\delta_{\mathrm{R}}(\mathrm{K}, \mathrm{P}, \mathrm{Q}) = \mathrm{F}_{\mathrm{R}}(\mathrm{K}) \times \mathrm{U}\left[(\mathrm{K} - \mathrm{K}_{\mathrm{Q}}) - \frac{\theta_{\mathrm{PQ}}}{\theta_{\mathrm{V}}}\right]$$
(6)

причем

$$F_{Q}(K) = \delta_{Q}(K) \frac{\operatorname{sh}(\mu\pi - \mu\theta_{PQ})}{\operatorname{sh}(\mu\pi - \mu\theta_{0})}$$
(7)

$$F_{R}(K) = -\frac{\mu\Delta}{R} \delta_{Q}(K) \frac{-ch(\mu\pi - \mu\theta_{PQ})}{sh(\mu\pi - \mu\theta_{0})}$$
(8)

Центральный угол между Р и Q равен:

$$\cos\theta_{PQ} = \frac{x_P x_Q + y_P y_Q + z_P z_Q}{R^2}$$
(9)

В предыдущих уравнениях коэффициент и характеризует отношение электрической проводимости мембраны в тангенциальном и радиальном направлениях.

 θ_0 — расчетный угол либо синаптической области, либо элементарной области мембраны. Обычно $\theta_0 = 1^{\circ}$. Единичная ступенчатая функция в уравнениях (4), (5) и (6) учитывает эффект распространения тока от узла Q к узлу P с конечной скоростью V.

Величина θ_v равна:

$$\theta_{\rm v} = \frac{V\tau}{R} \tag{10}$$

Уравнения»(7) и (8) получены в результате дифференциальных уравнений, которые в свою очередь вытекают из разностных уравнений при предельном переходе (приложение № 2). Уравнения (4), (5) и (6) получены при переходе из системы координат {X', Y', Z'} в принятую систему $\{X, Y, Z\}$, где в системе ' $\{X Y', Z'\}$ Р и Q имеют следующие координаты:

$$\mathbf{x}_{\mathbf{Q}}^{\mathbf{I}} = \mathbf{y}_{\mathbf{Q}}^{\mathbf{I}} = \mathbf{0} \quad \mathbf{z}_{\mathbf{Q}}^{\mathbf{I}} = \mathbf{R}$$

 $x_{P}^{I}=R\cos \, \theta_{PQ} \quad z_{P}^{I}=R \sin \, \theta_{PQ} \quad y_{P}^{I}=0$

Подробный вывод уравнений с (4) по (8) приводится в [3].

Для определения полной тангенциальной составляющей плотности тока в данном узле Р необходимо вычислить по ур. (4) и (5) составляющие от всех возбужденных узлов.

Тангенциальная составляющая равна:

$$\delta_{m}(\mathbf{K},\mathbf{P}) = \sqrt{\left[\sum_{i=1}^{M} \delta_{\theta}(\mathbf{K},\mathbf{P},\mathbf{Q}_{i})\right]^{2} + \left[\sum_{i=1}^{M} \delta_{\varphi}(\mathbf{K},\mathbf{P},\mathbf{Q}_{i})\right]^{2}}$$
(11)

Эта величина сравнивается с порогом h для определения момента возбуждения.

Полная радиальная составляющая определяется как алгебраическая сумма составляющих по ур. (6) от всех возбужденных узлов

$$\delta_{\mathrm{R}}(\mathrm{K},\mathrm{P}) = \sum_{i=1}^{\mathrm{M}} \delta_{\mathrm{R}}(\mathrm{K},\mathrm{P},\mathrm{Q}_{i})$$
(12)

Возбуждение аксонного холмика и аксона. Принимаем, что аксонный холмик возбуждает аксон в тот момент, когда число возбужденных узлов аксонного холмика станет равным или превысит заданное число H_x возбужденных узлов аксонного холмика. Принято, что любая элементарная поверхностная область аксона обладает теми же свойствами, что и узел тела клетки. Ввиду симметрии задачи поверхность аксона разбивается не на отдельные узлы, а на расчетные окружности. Расстояние между окружностями по оси аксона равно шагу квантования ω_а. Каждая окружность возбуждается, если величина тангенциальной плотности тока равна или превышает пороговое значение ha. Возбуждаясь, окружность начинает генерировать ток в обе стороны, величина которого с течением времени уменьшается по уравнению

$$\delta_{a}(\mathbf{k}) = \delta_{oa} e^{-\mathbf{a}_{a^{\tau}}(\mathbf{K} - \mathbf{K}_{ba})} \times U(\mathbf{K} - \mathbf{K}_{ba})$$
(13)

где a_а — обратная постоянной времени затухания;

Кьа — момент возбуждения;

δ_{оа} — начальное амплитудное значение.

При моменте K_{3a} , когда δ_a (K_{3a}) $\leqslant \epsilon$, окружность переходит в состояние отдыха длительностью K_{aor} .

Ток в окружности Р (удаленной от начала координат на х_Р) от окружности Q(х_Q) равен (приложение № 3) при х_Р > х_Q

$$\delta_{a}(K, P, Q) = \delta_{Q}(K) \frac{\operatorname{sh}\left(\frac{L - x_{P}}{\mu_{a}}\right)}{\operatorname{sh}\left(\frac{L - x_{Q}}{\mu_{a}}\right)} \times U\left[(K - K_{Q}) - \frac{x_{P} - x_{Q}}{\chi}\right] \quad (14)$$

при x_P < x_Q

$$\delta_{a} (K, P, Q) = -\delta_{Q} (K) \frac{\operatorname{sh}\left(\frac{X_{P}}{\mu_{a}}\right)}{\operatorname{sh}\left(\frac{X_{Q}}{\mu_{a}}\right)} \times U\left[(K-K_{Q}) - \frac{X_{Q} - X_{P}}{\chi}\right]$$
(15)

где µ_а — коэффициент, характеризующий физические свойства аксона.

Полные составляющие тока в данной окружности от всех остальных возбужденных окружностей определяются простым суммированием.

Возбуждение синаптической бляшки. Принимается, что синаптическая бляшка возбуждается, когда возбуждается окружность аксона, непосредственно предшествующая окружности, на которой располагается синаптическая бляшка.

Через один такт времени после возбуждения бляшка производит рабочий залп медиатора. Число выброшенных квантов медиатора N принимается неизменным и независимым от частоты возбуждения бляшки. Из нейрофизиологических исследований известно, что это число имеет слабый максимум при частоте $f = 20 \div 30$ гц. В случае необходимости надо ввести зависимость величины N от числа поступивших возбуждающих импульсов, например, так, как предложено в [4].

После выброса медиатора бляшка в течение K_{60T} тактов отдыхает При разных соотношениях K_{60T} н $a_a \tau$ (при заданных δ_a , ε) бляшка производит разное число рабочих залпов за один период возбуждения аксона.

Заключение

Предлагаемая модель может быть использована для построения сложных нейронных сетей и их исследования.

Кроме того, модель может быть использована для проверки ряда физиологических гипотез работы нейрона.

Одним из недостатков модели является необходимость выполнения большого объема вычислительных работ даже в случае грубого квантования сферы, ввиду чего требуется применение ЦВМ.

Объем вычислительных работ мало зависит от количества синапсов. Однако их увеличение приводит к возрастанию объема памяти ЦВМ.

Модель позволяет рассчитывать процессы возбуждения и торможения в дискретные моменты времены и для дискретных точек. При уменьшении величины квантования по времени и пространству данная модель будет все ближе и ближе приближаться к идеальной математической модели нейрона, в которой процессы развиваются непрерывно во времени и пространстве. В настоящее время в лаборатории вычислительных машин Ереванского политехнического института ведутся исследования поведения отдельного нейрона на основе предлагаемой математической модели. Блок-схема, по которой составлена программа для расчетов, приведена на рис. 3.

Рис. 3. Блок-схема.

Приложение 1

Определение выражения плотности тока в синаптическом узле

Геометрический размер синаптической бляшки характеризуется телесным углом θ_c^{∞} . Принимаем, что бляшка выбрасывает в данный момент времени в щель «N медиатора, где «— величина одного кванта медиатора, а N — число таких квантов. Из-за распада это количе-«ство медиатора во времени изменяется по экспонете.

Рис. 4. Размеры, связанные с синаптической бляшкой.

Считая электрический ток, возникающий от действия медиатора, пропорциональным количеству медиатора, получим, что при данном "q" -синаптический узел генеоирует ток

$$I_{q}(t) = C_{1} N_{q}^{1} \alpha e^{-a_{c}t}$$

$$(1.1)$$

где С₁ (а/ммоль) коэффициент пропорциональности.

Этот ток вытекает из цилиндрической поверхности радиуса т_с = R sin θ_c^{2} (рис. 4) и высотой Δ , равной толщине проводящей части мембраны. Тогда тангенциальная составляющая плотности тока синаптического узла "q" будет равна

$$\delta_{q}(t) = \frac{l_{q}(t)}{2\pi r_{c}\Delta} = \frac{C, N_{q}\alpha}{2\pi R\Delta \sin \theta_{c}} \cdot e^{-a_{c}t}$$
(1.2)

$$\delta_{q}(t) = C\alpha N_{q} e^{-a_{c}t}$$
(1.3)

где

$$C = \frac{C_1}{2\pi R \Delta \sin \theta_c} \tag{1.4}$$

Так как процесс выброса может происходить в момент $t = t_q = K_q \tau$, то выражение для плотности тока необходимо записать в виде:

$$\delta_{q} (K) = C \alpha N_{q} e^{-a_{c} \tau (K - K_{q})} XU (K - K_{q})$$
(1.5)

где

$$U(K - K_q) = \begin{cases} 0 & при & K < K_q \\ 1 & при & K > K_q \end{cases}$$

единичная ступенчатая функция.

Приложение 🎗

Закон распространения тока по сферической поверхности

Задача решается в сферической системе координат $\{\theta, \phi, R\}$, и на этой поверхности имеем один источник возбуждения, расположенный в точке $\{O, O, R\}$.

Рассмотрим элементарный элемент шара (рис. 5):

F₀ — широтная составляющая плотности тока;

F_{\varphi} — азимутальная составляющая плотности тока;

F_R — радиальная составляющая плотности тока.

Из-за симметричности задачи имеем:

$$F_{\varphi} = 0; \quad \frac{\partial F_{\theta}}{\partial \varphi} = 0; \quad \frac{\partial F_{R}}{\partial \varphi} = 0$$
 (2.1)

Определим геометрические размеры элементарного элемента шара:

D 1

ac =
$$Rd\varphi \sin \theta$$

cd = $Rd\theta$
bd = $Rd\varphi \sin (\theta + d\theta)$

Дифференциалы широтной и радиальной составляющих плотностей тока будут:

$$F_{\theta}^{*} = F_{\theta} + \frac{\partial F_{\theta}}{\partial \theta} d\theta \qquad (2.2)$$

$$d\mathbf{F} = \mathbf{F}_{\theta}^{*} - \mathbf{F}_{\theta} = \frac{\partial \mathbf{F}_{\theta}}{\partial \theta} d\theta \qquad (2.3)$$

Математическая модель нервной клетки

$$dF_{\rm R} = F_{\rm R}^* - F_{\rm R} = \frac{\partial F_{\rm R}}{\partial \theta} d\theta \qquad (2.4)$$

Запишем первый закон Кирхгофа для элемента шара: $\Delta F_{\theta} ac = F_{\theta}^* \Delta bd - F_R ac \cdot cd$

Рис. 5. Геометрические размеры элемента шара: а) горизонтальная проекция, б) аксионометрия элемента, в) разрез по линии.

$$F_{\theta} \Delta R d\varphi \sin \theta = F_{\theta}^* \Delta R d\varphi \sin (\theta + d\theta) - F_{R} R^2 \sin \theta d\varphi d\theta$$

После пренебрежения малых величин порядка уравнение примет следующий вид:

25

(2.5)/

(2.6)

$$\Delta \left(F_{\theta}^{*} - F_{\theta} \right) = RF_{R}d\theta \tag{2.7}$$

или же окончательно с учетом (2.3) будем иметь:

$$\frac{\partial F_{\theta}}{\partial \theta} = \frac{R}{\Delta} F_{R}$$
 (2.8)

Запишем для этого же элементарного элемента закон Ома

$$\psi_{e}(\theta, \varphi) = -\frac{1}{\gamma} F_{R}$$
 потенциал в точке е (2.9)

$$\psi_{\rm f} \left(\theta + {
m d} \theta, \varphi
ight) = - rac{1}{\gamma} \, {
m F}^{*}_{
m R} \,$$
 потенциал в точке f (2.10)

Разность потенциалов будет:

$$\psi_{e} - \psi_{f} = -\frac{1}{\gamma} F_{R} + \frac{1}{\gamma} F_{R}^{*} \qquad (2.11)$$

С другой стороны, разность потенциалов точек е и f будет:

$$\psi_{\rm e} - \psi_{\rm f} = \frac{{\rm R}d\theta}{\gamma_0} F_{\theta}$$
 (2.12)

Приравнивая правые части уравнений (2.11) и (2.12), получим

$$\frac{1}{\gamma}(F_R^* - F_R) = \frac{R}{\gamma_0} F_0 d\theta \qquad (2.13)$$

Учитывая ур. (2.4), будем иметь

$$\frac{1}{\gamma} \frac{\partial F_{R}}{\partial \theta} = \frac{R}{\gamma_{0}} F_{\theta}$$
(2.14)

Решая систему дифференциальных уравнений (2.8) и (2.14) относительно F₀, получим

$$\frac{\partial^2 F_{\theta}}{\partial \theta^2} - \frac{R^2 \gamma}{1 \gamma_0 \Delta} \cdot F_{\theta} = 0$$
 (2.15)

Учитывая граничные условия,

 $F_{\theta} = \delta_Q$ при $\theta = \theta_0$, $F_{\theta} = 0$ при $\theta = \pi$

Решение уравнения (2.14) даст нам выражение для широтной составляющей плотности тока:

$$F_{\theta} = \delta_{Q} \frac{\operatorname{sh} \left(\mu \pi - \mu \theta\right)}{\operatorname{sh} \left(\mu \pi - \mu \theta_{0}\right)}$$
(2.16)

где $\mu^2 = \frac{R^2 \gamma}{l \gamma_0 \Delta}$ — безмерный коэффициент, зависящий от геометричес-

ких и электрических параметров сферы;

 γ₀ — удельная электропроводность внешней сферы толщиной Δ; ү — удельная электропроводность внутренней среды сферы толщиной 1.

Решая систему дифференциальных уравнений относительно F_R, по-

$$F_{R} = -\frac{\zeta \Delta \mu}{R} \delta_{Q} \frac{ch (\mu \pi - \mu \theta)}{sh (\mu \pi - \mu \theta_{0})}$$
(2.17)

Рис. 6а. Электрическая модель аксона с сосредоточенными параметрами. 6. Расчетная электрическая схема аксона.

Приложение 3

Закон распространения тока по аксону

Модель аксона — цилиндр длиной L, который имеет внутреннюю проводимость $G_y(x) \begin{bmatrix} 1 \\ 0M.M \end{bmatrix}$ и внешнее сопротивление $A_x(x) \begin{bmatrix} 0M \\ M \end{bmatrix}$.

Электрическая модель аксона имеет следующий вид (рис. 6а).

Точки, которые находятся на одной и той же расчетной окружности, обладают одинаковыми электрическими свойствами.

Рассмотрим данную цепочку в системе координат ХОҮ. Источник тока находится в начале координат (рис. 66). Ток δ_x (x) в момент входа в точку x равен:

$$\delta_{x}(x) = \frac{U_{x} - U_{x + \Delta x}}{A_{x}(x) \Delta x}$$
(3.1)

Ток по радиальному направлению будет:

$$\delta_{y}(x) = G_{y}(x) U_{x} \Delta x \qquad (3.2)$$

Напряжение в точке $(x + \Delta x)$ равно:

$$U_{x + \Delta x} = U_x + \Delta U_x = U_x + \frac{\partial U_x}{\partial x} \Delta x$$
 (3.3)

Запишем первый закон Кирхгофа для точки х:

$$\delta_{x}(x) = \delta_{x} + \delta_{y}(x) \qquad (3.4)$$

При предельном переходе, когда $\Delta x \rightarrow 0$, имеем

$$\delta\left(\mathbf{x} + \Delta \mathbf{x}\right) = \delta_{\mathbf{x}} \tag{3.5'}$$

Учитывая это, уравнение (3.4) примет вид:

$$\Delta \delta_{\mathbf{x}} = \delta \left(\mathbf{x} + \Delta \mathbf{x} \right) - \delta_{\mathbf{x}} \left(\mathbf{x} \right) = -\delta_{\mathbf{y}} \left(\mathbf{x} \right). \tag{3.6}$$

Решая совместно уравнения (3.2) и (3.6), а уравнение (3.1) с уравнением (3.3), соответственно получаем следующие дифференциальные уравнения:

$$\frac{d\delta}{dx} = -G_y(x) U$$
(3.7)

$$\frac{\mathrm{dU}}{\mathrm{dx}} = -\mathrm{A}_{\mathrm{x}}\left(\mathrm{x}\right)\delta \tag{3.8}$$

Для модели аксона сопротивления не меняются вдоль оси х:

$$A_{x}(x) = A_{0} = const,$$

$$G_{v}(x) = G_{0} = const$$

После решения системы дифференциальных уравнений (3.7) и (3.8) с учетом граничных условий

$$\delta(0) = \delta_0$$
 при $x = 0$,
 $\delta(L) = 0$ при $x = L$

получаем выражение распространения тока по модели аксона:

$$\delta_{a}(x) = \delta_{0} \frac{\operatorname{sh} \frac{L-x}{\mu_{a}}}{\operatorname{sh} \frac{L}{\mu_{a}}}$$
(3.9)

Когда источник тока находится в произвольной точке Q и рассматривается ток в точке P, то выражение (3.9) принимает следующий вид:

при $x_P > x_Q$

$$\delta_{a} (P, Q) = \delta_{Q} \frac{\operatorname{sh}\left(\frac{L - x_{P}}{\mu_{a}}\right)}{\operatorname{sh}\left(\frac{L - x_{Q}}{\mu_{a}}\right)}$$
(3.10)

при $x_P < x_Q$

$$\delta_{a} (P, Q) = -\delta_{Q} \frac{\operatorname{sh}\left(\frac{X_{P}}{\mu_{a}}\right)}{\operatorname{sh}\left(\frac{X_{Q}}{\mu_{a}}\right)}$$
(3.11)

Ереванский политехнический институт

Поступило З.IV 1969 г.

Գ. Լ. ԱՐԵՇՑԱՆ, Լ. Կ. ՆԵՐՍԻՍՑԱՆ, Կ. Ա. ՇԱՀԻՆՅԱՆ

ՆԵՐՎԱՅԻՆ ԲՋՋԻ ՄԱԹԵՄԱՏԻԿԱԿԱՆ ՄՈԴԵԼ

Ամփոփում

Առաջարկված է ներվային բջջի մաթեմատիկական մոդել, որը բաղկացած է բջջի դնդային մարմնից և գլանային աջսոնից։ Գիտարկված է ըստ տարածության և ժամանակի ընդձատ մոդել։ Սինապսային բլյաշկաների տրված կոորդինատների և բնութագրերի (դուրս նետվող մեդիատորի ջանակը և ժամանակը) դեպջում մոդելը թույլ է տալիս Հաշվել գրգռման ալիջի տարածումը բջջի մարմնի վրայով դեպի աջսոնը, աջսոնի երկարությամբ մինչև նրա սինապսը և վերջինիս դրգռումը։

Մոդելում Հաշվի է առնվում մեդիատորի քայքայումը, բջջի մարմնի և աքսոնի առանձին տեղամասերի Հոգնածությունը, այդ տեղամասերի Հանգստի ծամանակը, տարբեր սինապսների (գրգռող և արգելակող) փոխներգործու-Թյունը, ինչպես նաև տեղամասերի շեմային արժեքները գրգռման ժամանակ։

Բերվում է ըստ ժամանակի քվանտների դրդռման Հաշվարկի բլոկ-սխեման։

ЛИТЕРАТУРА

1. В улдридж Д. Механизм мозга. М., изд. «Мир», 1965.

- 2. Крайзмер Л. П. Бионика, М., 1968.
- 3. Научно-технический отчет ОНИР Ер. политех. института.
- 4. Подковыров. Принципы управления адаптации переработки информации в моносинаптической спинномозговой рефлекторной дуге и их техническое использование. Автореферат канд. физ.-мат. н. М., МФИ.
- 5. Розенблатт Ф. Принципы нейродинамики. М., изд. «Мир», 1965.
- 6. Ходжкин А. Нервный импульс, М., изд. «Мир», 1965.
- 7. Экклс Дж. Физиология нервной клетки, М., ИЛ, 1959.