T. XXII. № 2. 1969

КРАТКИЕ НАУЧНЫЕ СООБЩЕНИЯ

УДК 612.8.105

Г. Х. БУНЯТЯН, Р. С. БАБЛОЯН, М. А. ДАВТЯН

О СВЯЗАННЫХ ФОРМАХ ГУАНИДИНОВЫХ СОЕДИНЕНИЙ В ГОЛОВНОМ МОЗГУ

Из однозамещенных гуанидиновых соединений в мозговой ткани обнаружены—аргинин, γ -гуанидиномасляная кислота, гликоциамин и тауроциамин. Обмен этих соединений, кроме аргинина, изучен весьма недостаточно. В мозгу животных присутствуют трансамидиназы, обеспечивающие взаимопревращения гуанидиновых соединений. Показана также возможность превращения гликоциамина в креатин и креатинфосфат в мозговой ткани. С другой стороны, известно, что гуанидиновые соединения обладают высокой биологической активностью. Гликоциамин и γ -гуанидиномасляная кислота, подобно γ -аминомаслянной кислоте (ГАМК), блокируют тормозящие синапсы изолированного нерва ракообразных, коры головного мозга кошек, вызывая резкие изменения в биоэлектрической активности коры, оказывают защитное действие при высоком кислородном давлении и пр.

Известно, что ГАМК в тканях находится в двух формах—свободной и связанной. Связанная форма ГАМК не проявляет биологической активности. Она освобождается из осадка гомогената, центрифугированного при 15000×g под действием слабых кислот или щелочей, гипотоничности среды, особенно кипячения и пр. Установлено также, что взаимопревращение этих двух форм играет существенное значение в регуляции активности ГАМК при разных функциональных состояниях.

Биологическая активность гуанидиновых соединений наводила на мысль о существовании связанной формы и этих соединений.

Наши опыты показали, что при часовой инкубации гомогената головного мозга крысы, приготовленного на Рингер-Крепс-фосфатном буфере (рН 7—7,3), наблюдается заметный прирост (на 20%) гуанидиновых соединений. Последние определяли методом Сакачуки в модификации Ван-Пилзима. Этот прирост не мог быть результатом биосинтеза аргинина, так как в мозговой ткани содержание цитруллина весьма незначигельно. Протеолиз белков (определяли количество фолиноположительных веществ методом Ансона) в течение инкубации может быть причиной лишь незначительного прироста гуанидиновых соединений. Оставалось полагать, что, вероятно, в мозговой ткани существуют связанные формы гуанидиновых соединений, которые высвобождаются при

инкубации. В пользу этого предположения говорит также полученный нами факт заметного увеличения (более 25%) уровня гуанидиновых соединений при 15-мин. кипячении гомогенатов головного мозга крыс.

С целью детального изучения вопроса влияния разных воздействий на высвобождение связанных гуанидиновых соединений, предварительно получали осадок гомогената путем центрифугирования при 15000×g 30 мин., после чего полученный осадок суспендировали в Рингер-Кребсфосфатном буфере и в других отмеченных в таблице средах, доводя до первоначального объема гомогената. Из данных таблицы видно, что из осадка гомогената мозговой ткани высвобождаются гуанидиновые соединения под воздействием низких концентраций кислот и щелочи, сахарозы, разбавления среды (водой), трихлоруксусной кислоты (ТХУ), двукратного замораживания и оттаивания, особенно при 15-мин. кипячении (таблица).

Табли ца Влияние разных воздействий на высвобождение связанных форм гуанидиновых соединений из осадка гомогената головного мозга крыс, центрифугированной при $15000\times g$

Среда суспендирования осадка и характер воздействия	Гуанидиновые соединения в мкмоль на 1 г свежей ткани
Буфер (Рингер-Кребс-фосфатный рН—7—7,3)	0,064+0,005
Буфер+NaOH (0,15 М)	0,188±0,003
Буфер+HCl (0,15 M)	p<0,01 0,171±0,002 (5) p<0,01
Буфер+ТХУ (3%/0)	0,150±0,002 (5)
Сахароза (0,25 М)	p<0,001 0,116±0,003 (5)
Вода	$ \begin{array}{c c} p < 0,01 \\ 0,145 \pm 0,004 \\ \hline (5) \\ p < 0,01 \end{array} $
Буфер+двукратное замораживание и оттаивание	0,161±0,002 (5) p<0,01
Буфер+15 мин. кипячение	0,221±0,002 (5) p<0,01

Интересно, что даже ТХУ не полностью высвобождает связанные формы этих соединений и в этом отношении заметно уступает кипячению. Между тем известно, что связанная ГАМК полностью высвобождается даже под влиянием этанола. Вероятно, часть гуанидиновых соединений более прочно связана, чем ГАМК и высвобождается только под влиянием кипячения. В настоящее время пока трудно что-либо опреде-

ленное сказать о характере связи этих соединений. По-видимому, сильные катионные свойства гуанидиновых соединений обусловливают прочность связи с кислыми белками и другими кислотными группами клеточных структур.

Существование двух форм гуанидиновых соединений и их взаимопереход в головном мозгу, вероятно, играет важную роль в функциональной активности мозговой ткани. Для выяснения последнего чрезвычайно интересного вопроса необходимы дальнейшие исследования.

Институт биохимии АН АрмССР

Поступило 17.XI 1968 г.

Հ. Խ. ԲՈՒՆԻԱԹՅԱՆ, Ռ. Ս. ԲԱԲԼՈՅԱՆ, Մ. Ա. ԴԱՎԹՅԱՆ

ԳԼԽՈՒՂԵՂՈՒՄ ԳՈՒԱՆԻԳԻՆԱՅԻՆ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ԿԱՊՎԱԾ ՁԵՎԵՐԻ ՄԱՍԻՆ

Ամփոփում

Ուսումնասիրված է սպիտակ առնետների գլխուղեղում գուանիդինային միացությունների կապված ձևերի առկայության Հարցը։ Յույց է տրված, որ գլխուղեղի հոմոգենատների ինկուբացման կամ 15 րոպե հռացման ընթաց- թում ավելանում է գուանիդինային միացությունների քանակությունը։ Հավանաբար այդ ընթացքում կապված գուանիդինային միացությունները անցնում են ազատ ձևերի։ Գուանիդինային միացությունների կապված ձևերը գտնվում են գլխուղեղի հոմոգենատի 15000×g ցենտրիֆուգացումից ստացվող մնացորդում, որտեղից անջատվում են գլանազան ֆիզիկո-ջիմիական ազդեցութիլունների տակ (թթուների ու հիմքերի, սախարողայի, տրիջլորքացախաթթվիցածը կոնցենտրացիաների, կրկնակի սառեցում ու հալեցում և, առանձնապես հռացում)։