T. XXII, № 2, 1969

УДК 581.145 : 149-

А. Г. ЮСУФОВ

ОСОБЕННОСТИ РАЗВИТИЯ ВЕГЕТАТИВНЫХ ПОТОМСТВ И ВОПРОС О СТАРЕНИИ И ОМОЛОЖЕНИИ РАСТЕНИИ В ОНТОГЕНЕЗЕ

Одним из спорных и недостаточно исследованных вопросов проблемы онтогенеза является вопрос о старении и омоложении вегетативно размноженных растений. Представления о старснии растений при вегетативном размножении, как результате необратимых стадийных изменений в точках роста побегов, все еще имеют распространение [10, 11], хотя известны данные, находящиеся в противоречии с подобными представлениями [1—7].

Противоречивость данных и мнений по вопросу об особенностях развития вегетативных потомств и побудила нас заняться изучением растений, полученных из разных органов — стебля, листьев и корней. Частично результаты и методика наших опытов уже освещены в печати [12—13]. Поэтому ниже мы остановимся только на результатах опытов, проведенных в последние годы с флоксом (Phlox paniculata L.) и мыльнянкой (Saponaria officinalis). Указанные многолетние растения хорошо размножаются отрезками корней и стеблей, а флокс — еще и листьями.

В опытах сравнивались вегетативные потомства, полученные из разных органов, а именно:

- . Из зоны корневой шейки у материнских кустов (из старой части корневой системы);
 - II. Из тонких боковых корней тех же кустов (молодые корни);
 - III. Из стеблевых черенков нижней зоны побега;
- IV. Из молодых побегов длиной 2—3 см, развившихся из пазушных почек стеблевых черенков нижней зоны побега:
 - V. Из стеблевых черенков верхней зоны побега;
 - VI. Из листьев нижнего яруса побегов;

Биологический журнал Армении, XXII, № 2-6

VII. Из листьев верхнего яруса побегов.

Листья без пазушных почек и отрезки стеблей были черенкованы 30.VI.1965 г. На листовых черенках побеги начали появляться в конце сентября, и почки, как правило, закладывались у них на корнях. Весной 1966 г. потомства из стеблевых и листовых черенков были высажены в грунт, и одновременно с ними в грунт черенкованы отрезки корней с растений, с которых в предыдущем году срезаны побеги и листья для укоренения. При делении корневой системы (по вариантам I и II) старались брать небольшие отрезки корневой системы с 2—3 почками.

Вскоре после высадки в грунт у потомства из стеблевых и листовых черенков, как и у корневых, было отмечено дружное и равномерное развитие побегов из почек корневой системы. Практически побеги разных потомств имели одинаковое возрастное состояние. В дальнейшем опытные растения сравнивались по росту, развитию, содержанию нуклеиновых кислот [8] и пигментов [9] в листьях (анализирована 3-я пара от верхушки побега), а также по регенеративной активности листьев. Работа проведена в лаборатории роста и развития Ботанического института АН СССР им. В. Л. Комарова.

Результаты опытов. Как и следовало ожидать, разновозрастные листья и стеблевые черенки из разных зон побега обнаружили неодинаковую укореняемость. Лучше укоренялись стеблевые и листовые черенки, взятые из верхней части побега. Обнаружены различия и в мощности развития корневой системы. Так, стеблевые черенки флокса из верхней зоны побега в начале августа имели в среднем 14,5 корешков, а черенки из нижней зоны тех же побегов—4,3 корешка. К концу 1-го года жизни потомства, полученные из разных зон побега, заметно отличались между собой в развитии. Все растения флокса и мыльнянки, полученные укоренением верхушки побегов в октябре (14.Х) находились в фазе бутонизации, а отдельные из них даже цвели. Стебли у потомства из черенков нижней зоны побегов в первом году жизни отмерли без какихлибо заметных признаков бутонизации. Растения из листовых черенков в 1955 г. не дали бутонов и в течение всей зимы вегетировали.

Подсчет растений перед высадкой в грунт показал больший выпад укоренившихся черенков (стеблевых и листовых), взятых из нижней зоны побега.

После высадки в грунт вегетативные растения разного происхождения обнаружили различия в росте и развитии. Растения мыльнянки и флокса, полученные из зоны корневой шейки, по сравнению с другими вегетативными потомствами заметно выделялись по высоте и скороспелости (табл. I и 2). В развитии и росте отставали потомства из молодых корней у материнских кустов (вариант II), что согласуется с прежними наблюдениями [12]. Потомства из так называемых стадийно и возрастно разнокачественных зон стебля (ср. III—V, VI ѝ VII) достоверных различий в росте и развитии между собой не обнаружили, хотя бросается в глаза некоторое отставание в темпах развития у потомства из стеблевых и листовых черенков из нижней зоны побега (см. III и VI).

Вегетативные потомства разного происхождения в ряде случаев отличались между собой по содержанию нуклеиновых кислот и пигментов в листьях (табл. 3). Рано зацветающие растения, полученные из отрезков старых корней (вариант I), в целом характеризовались меньшим содержанием нуклеиновых кислот и хлорофилла в листьях. В данном случае переход растений к цветению оказал влияние на физиологические особенности листьев. Различия в содержании нуклеиновых кислот и пигментов в листьях вегетативных потомств, полученных укоренением развовозрастных листьев и частей побега, носят неопределенный характер,

Таблица 1 Различия в росте у вегетативных потомств разного происхождения (средние данные на 26.VIII 1966 г.)

	Высота	стебля	Количество	Bec 20	Содержание	
Варианты	всм	Д/m _{diff}	листьев на побе- ге, шт.	листьев, г	воды в листьях, ⁰ / ₀ .	
Флокс						
I II III V VI VI	56,4±1,57 22,3±7,86 33,7±2,24 40,0±1,98 29,1±1,58 31,0±5,14	4,26 8,32 6,5 12,3 4,73	$\begin{array}{c} 21,3\pm0,71\\ 13,0\pm2,17\\ 28,2\pm1,2\\ 30,0\pm2,98\\ 25,0\pm0,9\\ 25,0\pm0,87 \end{array}$	9,5 9,35 8,9 8,8 7,7 8,43	75,38 79,08 79,19 84,68 79,19 80,54	
Мыльнянка						
I III IV V	$\begin{bmatrix} 65,0\pm1,2\\ 50,6\pm2,86\\ 58,3\pm2,35\\ 56,6\pm3,56 \end{bmatrix}$	4,55 2,55 2,24	$ \begin{vmatrix} 17,8 \pm 0,58 \\ 19,5 \pm 0,95 \\ 17,0 \pm 0,61 \\ 16,8 \pm 0,71 \end{vmatrix} $	12,4 11,5 12,2 12,48	82,42 84,1 83,61 83,71	

Таблица 2 Темпы развития у вегетативных потомств разного происхождения (1966 г.)

Варианты	Количество	Число бутонизи- ровавших расте-	Число зацветших растений, $^{0}/_{0}$			
	растений в опыте	ний на 16.VIII, 0/0	26.VIII	9.1X	21.IX	
Флокс						
I II III V VI VI	60 5 11 6 5 34	$\begin{array}{c} 100 \\ 0.0 \\ 18.2 \pm 12.2 \\ 66.7 \pm 22.0 \\ 0.0 \\ 26.6 \pm 7.6 \end{array}$	76,6 	100 0,0 36,4 83,4 20,0 32,4	20,0 100 83,4 40,0 35,3	
Мыльнянка		·	ŀ			
I III IV V	130 13 30 14	100 46,2±15,5 53,3± 9,04 50,0±13,8	100 0,0 6,7 14,3		38,5 30,0 50,0	

и объяснить их природу проявлением у растений возрастной и стадийной разнокачественности исходного черенкового материала невозможно. Аналогичны также различия в способности к укоренению листовых черенков, взятых с разных вегетативных потомств (табл. 4).

В итоге мы видим, что вегетативные потомства разного происхождения на второй год жизни меньше отличаются между собой в развитии, чем в первый год. Указанные и другие [12] данные дают основание для вывода о постепенном сглаживании различий у вегетативных потомствразного происхождения.

Таблица 3 Содержание нуклеиновых кислот и пигментов в листьях у вегетативных потомств разного происхождения (1966 г.)

	Содержание нуклеиновых кислот в мг ⁰ / ₀			Содержание пигментов в свежих листьях в ү/г				
Варианты					каротин	лютеин	хлорофилл	
	ДНК	РНК	всего	в ⁰ / ₀			a	б
Флокс (18.VIII)								
I II III V VI VI VII	59,8±0,3 69,2±0,24 74,7±0,59 64,0±0,15 63,0±0,24 62,9±5,6	390,8±15,4 476,1±1,64 591,1±3,36 514,2±1,5 368,7±0,73 450,6±8,85	450,6 545,3 665,8 578,2 431,7 513,5	100 121,0 147,7 128,3 95,8 113,9	40,3±6,0 51,6±1,6 48,4±1,8 34,5±0,14 29,5±1,1 40,1±2,9	27,0±3,0 28,3±0,5 34,8±2,3 29,7±2,4 18,2±0,9 28,8±0,7	$310,2\pm 9,5$ $290,4\pm 9,8$ $346,7\pm 0,4$ $335,6\pm 10,4$ $209,0\pm 5,3$ $327,4\pm 9,7$	$\begin{array}{c} 85,6 \pm 1,4 \\ 27,8 \pm 0,7 \\ 241,1 \pm 4,9 \\ 81,7 \pm 4,0 \\ 164,6 \pm 2,7 \\ 76,6 \pm 11,6 \end{array}$
Мыльнянка (22.VIII)			•					
I III IV V	30,8±1,65 28,6±1,1 38,1±0,95 29,4±2,57	$ \begin{array}{c} 433,1 \pm 14,0 \\ 555,9 \pm 0,75 \\ \hline 539,9 \pm 2,1 \\ 445,6 \pm 2,89 \end{array} $	473,9 584, 5 578, 0 475,0	100 123,4 121,9 100,2	39,2±1,5 34,8±0,4 48,6±3,5 45,9±0,8	38,7±0,5 34,6±0,5 42,1±2,4 43,6±0,3	421,7±16,1 412,6±24,3 540,1±1,6 482,4±8,4	$149,3\pm2,6$ $132,9\pm11,1$ $166,6\pm9,5$ $175,7\pm13,7$

Таблица 4 Укореняемость листовых черенков мыльнянки, взятых с разных вегетативных потомств (1.IX.1966 г.)

Варианты	Количество	Число укоренившихся листьев, ⁰ / ₀				
	листьев в опыте	21/IX	24/IX	27/IX	1/X	
I,	33	21,2	48,5	63,7	78,8	
III	30	6 6,7	86,7	90,0	100	
IV	34	32,4	73,6	82,4	85,3	
V .	28	14,3	50,0	75,0	76,8	

Вопрос о равноценности растений вегетативного и семенного происхождения по состоянию готовности к цветению в принципе должен быть решен положительно, по крайней мере, применительно к многолетним формам. Принято считать, что любая меристема в своей основе является онтогенетически молодым образованием [2-5]; однако темпы ее дифференциации зависят от многих условий, в том числе и от состояния развития материнских растений. Указание И. В. Мичурина и И. II. Кренке о влиянии возрастного состояния материнских растений и черенкуемых органов на сроки генеративного развития вегетативных потомств, хотя и нуждается в коррективах, в целом сохраняет свою силу и верно в отношении сроков наступления первого цветения. Это положение должно быть дополнено следующими обстоятельствами: во-первых, различия в цветении у вегетативных потомств, полученных из черенков разновозрастных растений, обусловлены не в силу необратимости так называемых стадийных изменений, передающихся якобы по стеблю вниз в результате деления клеток точек роста, а влиянием на развивающиеся молодые меристемы других физиологически более подготовленных органов и частей (поэтому размер взятого черенка, наличие на нем листьев имеют значение для перехода черенковых растений к цветению); во-вторых, темпы развития вегетативных потомств определяются сроками и мощностью развития корней на самих черенках. Так, одновозрастные черенки, взятые с одних и тех же растений, проявляют большие различия в сроках цветения в зависимости от времени развития у них корней [14]. Одной из причин различий в цветении у черенковых потомств разного происхождения в первый год жизни является неодинаковая степень развитости у них корневой системы. По мере развития корневой системы и обновления надземной части различия в сроках наступления цветения у вегетативных потомств разного происхождения постепенно сглаживаются, что наблюдается уже со второго года жизни.

Вопрос о возможности вырождения растений при длительных черенкованиях остается спорным, и разработка его нуждается в других методических подходах. Данные, подобные вышеизложенным, не могут

служить достаточным основанием для ответа на вопрос о том, происходит ли вырождение растений при длительных и регулярных черенкованиях.

Ա. Գ. ՅՈՒՍՈՒՖՈՎ

ՎԵԳԵՏԱՏԻՎ ՍԵՐՈՒՆԴՆԵՐԻ ԶԱՐԳԱՑՄԱՆ ԱՌԱՆՁՆԱՀԱՏԿՈՒԹՅՈՒՆՆԵՐԸ ԵՎ ՔՈՒՅՍԵՐԻ ՕՆՏՈԳԵՆԵՏԻԿ ԾԵՐԱՑՄԱՆ ՈՒ ԵՐԻՏԱՍԱՐԳԱՑՄԱՆ ՀԱՐՑԸ՝

Ամփոփում

Հեղինակն ուսումնասիրել է հուրանավոր ըոցենու և բուժիչ օճառախոտի վեդետատիվ սերունդները, որոնք աճեցվել են տարբեր ծափում ունեցող կարոններից։ Արմատավղիկից վերցված կտրոնները (հին արմատներ) աչքի են ընկեր դանդաղ աճով և վաղ ծաղկմամբ։ Երիտասարդ արմատներից ստացված բույսերը աճման ու զարգացման տեսակետից զգալիորեն ետ են մնացել։

Ստադիական և հասակային տեսակետից տարասեռ կտրոնները աճման ու դարգացման տարբերություն չեն տվել, չնայած ստորին գոտու ցողունային ու տերևային կտրոններից ստացված սերունդներն զգալիորեն հետ են մնացել դարգացման տեսակետից։ Նուկլեինաթթուների և պիզմենտների պարունակու- թյունը տարբեր կտրոնների մոտ առանձնապես տարբերություն չի տվել։ Ավելի ծեր արմատներից ստացված կտրոնաբույսերը պարունակել են ջիչ ջլորոֆիլ և նուկլեինային թթուներ։ Ստացված տվյալները հիմջ են տալիս եղրակայնելու, որ տարբեր ծագում ունեցող վեզետատիվ սերունդների մոտ աճման ու ղարգաց-ման տարբերությունը աստիճանաբար վերանում է կյանջի երկրորդ տարուցակսած։

ЛИТЕРАТУРА

- 1. Ефейкин А. К. ДАН СССР, т. 56, 7, 1947.
- 2. Ефейкин А. К. ДАН СССР, т. 105, 1, 1954.
- Ефейкин А. Қ. Докл. Ереванского симпозиума по онтогенезу высших растений, Изд. АН АрмССР, 1966.
- Казарян В. О. Физиологические основы онтогенеза растений. Изд. АН АрмССР, 1959.
- 5. Казарян В. О. ДАН АрмССР, т. 41, 2, 1965.
- Казарян В. О. Докл. Ереванского симпозиума по онтогенезу высших растений. Изд. АН АрмССР, 1966.
- 7. Казарян В. О., Балагєзян Н. В. ДАН АрмССР, т. 25, 1957.
- 8. Нетупская С. В., Курамшин Г. С., Ивлева Л. А. Сб. Биология нуклеинового обмена у растений. Изд. «Наука», М., 1964.
- 9. Сапожников Д. И., Бажанова Н. В. и др. Пигменты пластид зеленых растений и методика их исследования. Изд. «Наука», М.—Л., 1964.
- 10. Шаин С. С. Значение ярусной разнокачественности при вегетативном размножении многолетних бобовых трав. Автореферат канд. диссертации, М., 1966.
- 11. Ширшов В. А. и Шаин С. С. Ботанич. журнал, П. 1963.
- 12. Ю с у ф о в А. Г. Физиол. растений, т. 6, вып. 2, 1959.
- 13. Ю с у ф о в А. Г. Бюлл. Гл. бот. сада, вып. 41, 1961.
- 14. Ю с у ф о в А. Г. Докл. высшей школы, биол. науки, І, 1964.