T. XXII. № 2, 1969

УДК 591.1.05

Ж. С. ГЕВОРКЯН, А. С. ОГАНЕСЯН

ВЛИЯНИЕ α-КЕТОГЛЮТАРОВОЙ, ЩАВЕЛЕВОУКСУСНОЙ И ФУМАРОВОЙ КИСЛОТ НА ОБРАЗОВАНИЕ АММИАКА ИЗ L-АМИНОКИСЛОТ В ПОЧЕЧНОЙ ТКАНИ

Исследованиями ряда авторов [4, 7—11, 13, 14] установлено, что при инкубировании срезов, гомогената и митохондрий мозговой, печеночной и мышечной тканей утилизированная глютаминовая кислота в основном превращается в аспарагиновую. Подобная картина наблюдается также при инкубировании гомогената почечной ткани [14]. Вместе с тем отмечается, что незначительная часть глютаминовой кислоты подвергается действию глютамат-дегидрогеназы с образованием свободного аммиака. По данным Де Гаан и сотр. [12], подавление процесса превращения глютаминовой кислоты в аспарагиновую (ингибированием активности дегидрогеназы янтарной кислоты) приводит к усилению образования аммиака из добавленной глютаминовой кислоты.

Наши исследования показали, что срезы коркового слоя почек белых крыс в аэробных условиях интенсивно деаминируют ряд L-аминокислот (глютаминовая, аспарагиновая, орнитин, гамма-аминомасляная, аргинин, пролин и др.) с образованием свободного аммиака. Гомогенаты и митохондриальная фракция почечной ткани, а также срезы и гомогенаты других тканей (мозговая, печеночная, мышечная) не обладают подобной способностью. Высокий уровень выхода свободного аммиака наблюдается из орнитина, затем из аспарагиновой и глютаминовой кислот [6].

Каков механизм образования аммиака из этих природных аминожислот?

По мнению Браунштейна [1—3], подавляющее большинство природных аминокислот переносит свою аминогруппу на α-кетоглютаровую кислоту (α-КГЛ) с образованием L-глютаминовой кислоты, последняя при унастии глютамат-дегидрогеназы подвергается окислительному деаминированию с образованием α-КГЛ и свободного аммиака. В опытах этих авторов добавление никотинамид-аденин-динуклеотида (НАД) и α-КГЛ значительно усиливало образование аммиака из аспарагиновой кислоты и аланина. НАД оказывал подобное влияние на процесс образования аммиака и из глютаминовой кислоты.

По мнению Бунятяна и Мовсесяна [5], аспарагиновая кислота в мозтовой и печеночной тканях деаминируется при участии деамино-НАД. Никотинамид-аденин-динуклеотид при помощи соответствующей деаминазы подвергается деаминированию с образованием свободного аммиака и деамино-НАД. Аспарагиновая кислота переносит свою амино-группу на деамино-НАД, при этом последний превращается в НАД, который, деаминируясь НАД-деаминазой, вновь превращается в деамино-НАД и повторяет цикл. Углеродный остов аспарагиновой кислоты вовлекается в лимоннокислый цикл и подвергается дальнейшим превращениям.

В опытах Бунятяна и Мовсесяна инкубирование мозговой тканивиесте с аспарагиновой кислотой и $HA\mathcal{A}$ вызывает значительный прирост свободного аммиака.

Имея в виду эти данные, мы провели ряд исследований по изучению влияния α -кетоглютаровой, щавелевоуксусной (ЩУК) и фумаровой кислот (ФК) на образование аммиака из L-глютаминовой, L-аспарагиновой кислот и из L-орнитина.

Опыты проводились со срезами коркового слоя почек белых крыс. Срезы, весом 200 мг, были инкубированы на Кребс-Рингер-бикарбонатном буфере, рН-7,4, при t—37°С, в течение одного часа. К инкубируемой среде аминокислоты добавлялись в количестве 5мМ (конечная концентрация), концентрации же α -КГЛ, ЩУК и ФК составляли 0,75 мг/мл. Общий объем инкубируемой среды—2 мл, газовой фазой были кислород (95%) и углекислый газ (5%). Микродиффузия аммиака проводилась по Конве. Аммиак определялся колориметрически после добавления реактива Несслера. Аминокислоты определяли методом электрофореза на бумаге.

Результаты опытов показали (табл. 1), что при добавлении α-КГЛ в инкубируемую среду, как в конгрольном опыте, так и вместе с глюта-миновой и аспарагиновой кислотами, а также и с орнитином, наблюдается подавление образования аммиака.

Таблица 1 Аммиакообразование из L-аминокислот при добавлении α -КГЛ, ЩУК и фумаровой кислоты

Условия опыта	Контроль- ный опыт	Глютамино- новая кисло- та	Аспараги- новая кисло- та	Орнитињ
Контрольный опыт	125	236	298	334
α -кетоглютаровая кислота \cdots	79	156	197	261
Контрольный опыт	125	236	293	334
Щавелевоуксусная кислота	85	197	231	307
Контрольный опыт	140	244	284	347
Фумаровая кислота	85	172	186	150

Щавелевоуксусная кислота также вызывает понижение продукции аммиака как в контрольном опыте, так и в опытах с упомянутыми аминокислотами. Причем тормозящее влияние α-КГЛ на образование амииака выражено сильнее, чем щавелевоуксусной кислоты. Интересно-

Влияние α -КГЛ, ЩУК и фумаровой кислоты на превращения L-аминокислот в корковом слое почек

Условия опыта	Количество аминокислот в гаммах/г ткани		
	Глютамат	Аспартат	Орнитин
Контрольный опыт			
а) без добавлений	380 630 630 610	200 140 250 250	220 200 200 180
Глютаминовая кислота			
a) без добавлений	116 0 1190 1270	29 0 35 0 330	180 180 180
Аспарагиновая кислота			100
 а) без добавлений	810 990 1010	890 750 910	180 180 160
Орнитин	į		
 а) без добавлений б) + α-КГЛ в) + ЩУК г) + фумаровая кислота 	490 640 610 620	250 180 290 290	1010 1280 1270 1230

отметить, что фумаровая кислота вызывает более выраженное тормо-жение образования аммиака из L-аминокислот, чем α-КГЛ и ЩУК.

Надо было полагать, что добавленные кетокислоты и фумаровая кислота вызывают определенные сдвиги в аминокислотном составе почечной ткани, которые могли быть причиной подавления образования свободного аммиака. В связи с этим параллельно изучалось влияние этих кислот (α-КГЛ, ЩУК и ФК) на содержание глютаминовой, аспарагиновой кислот и орнитина в срезах коркового слоя почек.

Как видно из табл. 2, в контрольных опытах в присутствии α -КГЛ, ЩУК и ФК наблюдается значительное повышение содержания глютаминовой кислоты. Добавление α -КГЛ вызывает также понижение количества аспарагиновой кислоты, между тем как в присутствии ЩУК и ФК наряду с повышением количества глютамата отмечается также некоторое увеличение содержания аспарагиновой кислоты.

При инкубировании срезов с глютаминовой кислотой наблюдается некоторое увеличение аспарагиновой кислоты. Глютамат вместе с ЩУК приводит к дальнейшему повышению содержания аспарагиновой кислоты, а с фумаровой—вызывает повышение содержания как глютаминовой, так и аспарагиновой кислот.

Добавление одной аспарагиновой кислоты приводит к значительному возрастанию глютаминовой кислоты. Аспарагиновая кислота вместе с α-КГЛ вызывает заметное понижение содержания аспартата (по сравнению с контролем) и дальнейшее повышение глютаминовой кисло-Биологический журнал Армении, XXII, № 2—2

ты. Фумаровая кислота вместе с аспарагиновой вызывает значительное повышение количества глютаминовой кислоты, а содержание аспарагиновой кислоты почти не изменяется. При добавлении одного орнитина наблюдается некоторое повышение содержания глютаминовой и аспарагиновой кислот. Орнитин вместе с α-КГЛ приводит к дальнейшему увеличению количества глютаминовой кислоты и существенному понижению содержания аспарагиновой кислоты. Орнитин вместе с ЩУК и ФК приводит к повышению содержания глютаминовой и аспарагиновой кислот. Следует отметить, что при добавлении кетокислот и фумаровой кислоты вместе с орнитином, несмотря на определенные изменения в содержании глютамата и аспартата, количество самого орнитина при этом не только не уменьшается, а даже несколько повышается, что, по-видимому, связано с использованием добавленных кетокислот в качестве энергетического субстрата; при этом орнитин не деаминируется, и его содержание сохраняется на высоком уровне.

Как показывают приведенные данные, добавление α-КГЛ, ЩУК и ФК приводит, с одной стороны, к повышению содержания глютаминовой и аспарагиновой кислот (в случае ЩУК и ФК), а с другой — подавлению образования аммиака как в контрольных опытах, так и при добавлении их вместе с L-аминокислотами.

Наши наблюдения показали, что L-глютаминовая и L-аспарагиновая кислоты, а также L-орнитин, в срезах коркового слоя почек белых крыс интенсивно деаминируются и усиливают дыхание почечной ткани [6]. Усиление поглощения кислорода при этом связано с окислением углеродного остова этих аминокислот (α-КГЛ, ЩУК) по циклу Кребса. Возможно, что добавленные к срезам почечной ткани α-КГЛ, ЩУК и ФК, интенсивно окисляясь, предохраняют распад (деаминирование) L-аминокислот. Данные кетокислоты, как конечные продукты процесса деаминирования (α-КГЛ, ЩУК), оказывают подавляющее действие на активность деаминирующих ферментов почечной ткани (фумаровая кислота в почечной ткани легко превращается в ЩУК и α-КГЛ). Следовательно, в пробах, инкубированных с кетокислотами, к концу инкубации будет определяться больше аминокислот, чем в контрольных пробах.

Подавление образования аммиака из L-аминокислот в присутствии кетодикарбоновых кислот можно объяснить также и устранением образовавшегося аммиака путем ресинтеза глютаминовой кислоты из аммиака и α -КГЛ, однако скорость реакции прямого реаминирования в тканях низкая, поэтому она не может играть существенной роли в процессах подавления образования аммиака в присутствии кетодикарбоновых кислот (α -КГЛ и ЩУК).

Таким образом, подавление аммиакообразования из L-аминокислот в присутствии α -КГЛ, ЩУК и ФК надо объяснить подавлением активности ферментов, осуществляющих деаминирование L-аминокислот, и предотвращением утилизации эндогенных и добавленных аминокислот. Не исключена возможность, что фумаровая кислота сама по себе (не через превращения в КГЛ и ЩУК) оказывает подавляющее действие

на аммиакообразование в почечной ткани. В связи с этим следует отметить также, что α -КГЛ, ЩУК и Φ К в определенной мере подавляют поглощение глютаминовой, аспарагиновой кислот и орнитина срезами коркового слоя почек.

Для выяснения механизма подавляющего действия α-КГЛ, ЩУК и ФК на аммиакообразование из L-аминокислот в почечной ткани в дальнейшем необходимо провести подробные исследования с более точными методами (изотопы).

Результаты предварительных опытов показали, что кетокислоты (α -КГЛ и ЩУК) в почечной ткани (возможно и в других тканях) оказывают регулирующее влияние на процесс деаминирования глютаминовой и аспарагиновой кислот и орнитина.

Институт биохимии АН АрмССР

Поступило 12.VI 1968 г.

Ժ. Ս. ԳԵՎՈՐԳՅԱՆ, Ա. Ս. ՀՈՎՀԱՆՆԻՍՅԱՆ

ԱԼՖԱ–ԿԵՏՈԳԼՅՈՒՏԱՐԱԹԹՎԻ, ՕՔՍԱԼԱՔԱՑԱԽԱԹԹՎԻ ԵՎ ՖՈՒՄԱՐԱԹԹՎԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ Լ–ԱՄԻՆԱԹԹՈՒՆԵՐԻՑ ԱՄԻԱԿԻ ԱՌԱՋԱՑՄԱՆ ՊՐՈՑԵՍԻ ՎՐԱ

Ամփոփում

Հեղինակների ուսումնասիրությունից ստացված տվյալները ցույց են տվել, որ ինկուբացիայի ընթացքում L-գլյուտամինաթթուն, L-ասպարագինաթթուն և L-օրնիտինը բավական մեծ ինտենսիվությամբ դեղամինացման են ենթարկվում սպիտակ առնետների երիկամների կեղևային մասի կտրվածքների կողմից, առաջացնելով մեծ քանակությամբ ազատ ամիակ։ Ալֆա-կետոգլյուտարաթթվի, օքսալաքացախաթթվի և ֆումարաթթվի ազդեցության տակ ճնշվում են հիշյալ ամինաթթունընրանցից։ Ենթադրվում է, որ այդ թթուները ճնշում են այն ֆերմենտների ակտիվությունը, որոնք ներդրավվում են հիշյալ ամինաթթուների դեղամինացման պրոցեսներում։

ЛИТЕРАТУРА

- 1. Браунштейн А. Е. и Азарх Р. М. Биохимия, 9, 337, 1944.
- 2. Браунштейн А. Е. Биохимия аминокислотного обмена, М., 1949.
- Браунштейн А. Е. Главные пути ассимиляции и диссимиляции азота у животных, М., 1957.
- 4. Бунятян Г. Х. Журн. всесоюзн. химич. об-ва им. Менделеева, 9, 412, 1964.
- 5. Бунятян Г. Х. и Мовсесян С. Г. Вопр. биохимии мозга, Ереван, 2, 5, 1966.
- 6. Бунятян Г. Х., Оганесят А. С. и Геворкян Ж. С. ДАН СССР, 177, 951, 1967.
- 7. Демин Ю. М., Мусаелян С. С., Карапетян В. С., Осипова Э. Н. из Акопян Д. А. Вопр. биохимии мозга, Ереван, 1, 45, 1964.
- 8. Шамкулашвили Г. Г. Автореферат канд дисс., 1966.

- 9. Balazs R, Biochem. J., 95, 497, 1965.
- 10. Borst P. and Slater E. C. Biochem. Biophys. Acta, 41, 170, 1960.
- 11. Chain E. B., Cohen M. M. and Pocchiari F. Proc. Roy. Soc. B, 156, 163, 1962.
- 12. De Haan E. J., Tager J. M. and Slater E. C. Biochem. Biophys. Acta, 89, 375, 1964.
- 13. Haslam R. G. and Krebs H. A. Biochem. J., 88, 566, 1963.
- 14. Krebs H. A. and Bellamy D. Biochem. J., 75, 523, 1960.