T. XXII, № 10, 1969

УДК 539.163.632.118.3

Г. В. ГЕГАМЯН

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ РАДИОИЗОТОПОВ СТРОНЦИЯ, ЦЕЗИЯ И ЦЕРИЯ В СИСТЕМЕ ПОЧВА-РАСТВОР (НА ПРИМЕРЕ ПОЛУПУСТЫННОЙ ПОЧВЫ—«ГРЭР» АРМЕНИИ)

Знание закономерностей поведения радиоизотопов в системе почвараствор крайне необходимо для прогноза и регулирования поступления в почвы и в биоценозы продуктов ядерных взрывов и отходов атомной промышленности. Результаты подобных исследований были неоднократно приведены в литературе [1—8, 10—12 и др.]. Используя метод меченых атомов, в этих работах изучалось влияние различных факторов (присутствие в водном растворе посторонних ионов, величина рН и E_h , наличие в растворе коллоидов и т. д.) на поведение радиоизотопов в почвах.

В развитие этого типа работ нами были поставлены опыты по определению размеров и характера поглощения радиоизотопов Sr⁹⁰, Cs¹³⁷ и Ce¹⁴⁴ почвой из 0,01 N раствора ЭДТА (этилендиаминтетравцетат натрия—искусственный сильный комплексон), дистиллированной воды и почвенной вытяжки и вытеснения их в каждом варианте поглощения раствором ЭДТА, дистиллированной водой и почвенной вытяжкой. Задача опытов, таким образом, заключалась в сравнительной оценке сорбционно-десорбционной способности перечисленных радиоизотопов в соответствующих растворах, на примере полупустынной почвы—«грэр» Армении.

Применение в качестве растворителя и десорбента радиоизотопов водной вытяжки из почвы является одной из существенных особенностей нашего исследования.

Материал и методика. Опыты проводили с радиоизотопами стронция-90, цезия-137 и церия-144 (взятыми в индикаторных количествах без добавления носителей), в статических условиях (метод взбалтывания) на образцах полупустынной почвы—«грэр» Аштаракского района Армянской ССР.

Ниже приводятся некоторые аналитические данные этой почвы (табл. 1).

Эти почвы отличаются незначительным содержанием гумуса, карбонатностью и бесструктурностью. Их мощность часто не превышает 20 см, ниже которой начинается богатая карбонатами материнская порода [9].

Таблица 1 Краткая характеристика полупустынной почвы— "грэр"

Почвенные горизонты	Гумус,	рН	Содержание обменных катионов, мг экв. на 100 г почвы			
и глубина, см	0/0	водной вытяжки	Mg ⁺²	Ca+2		
A (0-10)	1,76	7,78	0,98	14.30		
B (10—20)	1,93	8,12	0,39	17,20		
B/C (20-35)	0,96	8,25	7,35	3,14		
C(35-60)	0,23	8,07	2,65	1,76		

Как уже выше было отмечено, сорбцию радиоизотопов образцами отдельных почвенных горизонтов проводили из 0,01 N раствора ЭДТА, дистиллированной воды и водных вытяжек, приготовленных из соответственных почвенных горизонтов. В каждом варианте поглощения проводили десорбцию раствором ЭДТА, дистиллированной водой и почвенной вытяжкой. Для приготовления почвенных вытяжек брали навески почвы весом 100 г соответственно из каждого горизонта почвы, которые взбалтывали в 500 мл дистиллированной воды в течение 3 мин, после чего вытяжку отфильтровывали через бумажный фильтр, стараясь пропускать коллоидные частицы в фильтрат.

Навески почвы в 1 г и 30 мл раствора соответствующего радиоизотопа, взятого в индикаторных количествах, без добавления носителей, перемешивали на электромешалке в полиэтиленовых пробирках до установления равновесия (2 часа) в системе почва-раствор. Затем почву отделяли от раствора центрифугированием, промывали 30 мл дистиллированной воды, после чего заливали 30 мл десорбирующего раствора и снова перемешивали до установления равновесия. Процент поглощения радиоизотопа определяли по изменению радиоактивности раствора до и после сорбции. Процент десорбции определяли измерением радиоактивности, перешедшей из почвы в раствор-вытеснитель.

Все пробы просчитывали на автоматической установке с торцовым счетчиком.

Результаты опытов и их обсуждение. Результаты опытов по поглощению Sr^{90} , Cs^{137} Ce^{144} отдельными горизонтами полупустынной почвы из дистиллированной воды, 0,01 N раствора ЭДТА и водных вытяжек из почвы приведены в табл. 2. Из этой таблицы видно, что процент поглощения радиоизотопов меняется как по горизонтам, так и в зависимости от исходных растворителей. Во всех трех вариантах Sr^{90} со сравнительно большей полнотой поглощался горизонтами А и В. При сорбции из дистиллированной воды и почвенных вытяжек данных горизонтов этими же горизонтами поглощались примерно одинаковые количества Sr^{90} (\sim 85%), тогда как в горизонтах B/C и C радиостронций сорбировался из разных растворителей неодинаково: наиболее полно он поглощался из почвенных вытяжек, меньше—из дистиллированной воды и еще меньше из раствора ЭДТА. Сравнительно устойчивое и полное поглощение из

зсех растворителей и всеми горизонтами было отмечено у цезия (95—99%). Незначительная разница в сорбции, полученная между горизонтами, по-видимому, зависит от количества карбонатов в почве. Однако этих опытов недостаточно, чтобы на их основании можно было сделать однозначный вывод, что распределение цезия между данной почвой и раствором зависит только от количества карбонатов в почве.

Таблица 2 Поглощение радиоизотопов Sr^{90} , Cs^{137} и Ce^{144} отдельными горизонтами почвы при разных исходных растворителях (в $^{0}/_{0}$ от исходной активности)

гори-	Поглощено Sr ⁹⁰ из ис- ходных растворителей					Сs ¹³⁷ и з створителей	Поглощено Се ¹⁴⁴ из исходных растворителей			
Почвенные зонты	вода	ЭДТА	почвен- ные вы- тяжки	вода	ЭДТА	почвен- ные вы- тяжки	вода	ЭДТА	почвен- ные вы- тяжки	
A	85,6	35,4	87,3	98,9	98,7	98,6	93,6	3,1	91,6	
В	85,4	28,8	83,6	98,3	99,3	99,5	93,2	4,2	80,9	
B/C	49,7	23,9	81,3	98,6	98,4	99,0	93,1	17,1	61, 3	
C	39,6	16,2	61,8	95,2	92,3	95,7	40,0	1,1	79,3	

Наименьшая стабильность поглощения в зависимости от исходного растворителя обнаружена у церия. Больше всего церий поглощался из дистиллированной воды, меньше—из почвенных вытяжек и несравненно меньше из раствора ЭДТА. Церий по-разному поглощался также разными горизонтами почвы. Таким образом, поглощение радиоизотопов почвой зависит не только от их химической индивидуальности, но и от химического состава почвы и растворов, в которых радиоизотопы поступают в почву.

В табл. 3 представлены результаты опытов по вытеснению поглощенных из растворов радиоизотопов теми же растворами (ЭДТА, дистиллированная вода, почвенные вытяжки). Эти данные указывают на значительное разнообразие в поведении поглощенных разными горизонтами почвы радиоизотопов при вытеснении их различными десорбентами. Но при всем разнообразии можно видеть, что в минимальных количествах, независимо от десорбента, из почвы вытесняется цезий (0,1-6,6%); тогда как стронций и церий вытесняются ими из почвы в широком интервале: стронций от 1,2 до 100% и церий от 0,6 до 100%. Вместе с тем видно, что, если на вытеснение цезия существенно не влияет ни один десорбент, то на вытеснение стронция из почвы наибольшее действие оказывает раствор ЭДТА, меньшее-почвенная вытяжка, и минимальная десорбция отмечена в варианте с дистиллированной водой. Подобно стронцию, в опытах с церием имеется вариант с наибольшей десорбцией—выдеснение церия раствором ЭДТА; при этом раствор ЭДТА в среднем сильнее действует на церий, чем на стронций. Из приведенных данных видью, что десорбирующее действие всех десорбентов усиливается от горизонта А к горизонту С, т. е. подтверждается выше-

Таблица Вытеснение радиоизотолов из почвы различными десорбентами при разной исходной форме поглощения (в $^0/_0$ от поглощенной активности)

Почвен- ный го- ризонт	Сорбирова- но из ра- створа		Sr ⁹⁰			Cs ¹³⁷			Ce144	
		Вытеснители								
		вода	ЭДТА	почвенные Вытяжки	вода	ЭДТА	почвенные вытяжки	вода	ЭДТА	почвенные вытяжки
A	вода	1,7	38,8	7,5	0,8	2,8	0,7	1,1	21,1	1,9
	ЭДТА	1,2	11,4	11,3	0,5	0,6	0,6	9,6	92,6	10,0
	вытяжка	3,1	58,0	7,9	0,4	1,7	0,7	0,6	94,5	0,8
В	вода	6,5	55,5	14,3	0,2	2,0	0,3	95,9	66,8	2,6
	ЭДТА	5,9	73,1	20,4	0,3	0,9	0,3	60,9	100,0	45,7
	вытяжка	3,9	48,6	10,3	0,1	0,5	0,1	2,0	65,8	2,2
B/C	вода	5,8	55,9	14,5	0,3	6,6	0,3	16,7	65,8	4,4
	ЭДТА	6,7	43,5	20,0	0,2	4,1	0,2	17,6	42,9	14,7
	вытяжка	4,6	63,1	8,2	0,3	5,1	0,3	5,8	42,9	4,9
C	вода	44,2	100,0	69,2	2,0	6,6	1,8	3,3	100,0	4,9
	ЭДТА	41,5	81,8	82,8	2,0	5,0	3,4	34,3	31,3	59,7
	вытяжка	14,2	85,9	19,7	1,2	3,2	2,1	6,5	100,0	2,1

сказанное о зависимости сорбции радиоизотопов от химического состава почвы. Сопоставление результатов этих опытов позволяет считать, что поглощенный почвой цезий прочно удерживается в необменной форме, стронций преимущественно в ионообменной форме, а церий—в комплексной и ионообменной форме.

Из данных, приведенных в табл. 3, видно, что почвенная вытяжка является довольно сильным вытеснителем: по способности вытеснять стронций из почв она гораздо сильнее дистиллированной воды. Эти по-казатели дают возможность по-новому взглянуть на поведение стронция, цезия и церия в почвах. Выпадая с атмосферными осадками, состав которых можно сравнить с дистиллированной водой, эти радиоизотопы, попав на почву, передвигаются в ней в составе почвенных растворов, аналогичных почвенной вытяжке. Поэтому почвенная вытяжка по своей вытесняющей способности полнее отражает истинную картину почвенной миграции радиоизотопов, чем обычные опыты с дистиллированной водой.

Заключение

Опыты по изучению поглощения и вытеснения радиоизотопов стронция, цезия и церия показали, что их поведение в почве существенно зависит: 1) от исходного раствора, т. е. химического соединения, в котором они поступают в почву; 2) от состава и свойств почвы; 3) от типа их

поглощенной формы (обменная, необменная, комплексная и др.); 4) от свойств десорбирующих растворов.

Наряду с применением в качестве растворителей и десорбентов веществ с точно известными химическими свойствами, целесообразно экспериментальное применение природных экстрактов и водных вытяжек из почв, имеющих сложный и, как правило, неидентифицированный состав. Эти экстракты, однако, более соответствуют почвенным растворам, а их свойства могут быть определены сравнением их десорбирующей силы с известными веществами (ЭДТА, соли, кислоты и др.)

Институт медипинской радиологии АМН СССР, Отдел общей радиобиологии, г. Обнинск

Поступило 3.Х 1968 г.

Հ. Վ. ԳԵՂԱՄՅԱՆ

ՀՈՂ–ԼՈՒԾՈՒՅԹ ՍԻՍՏԵՄՈՒՄ ՍՏՐՈՆՑԻՈՒՄԻ, ՑԵԶԻՈՒՄԻ ԵՎ ՑԵՐԻՈՒՄԻ ՌԱԴԻՈՒԶՈՏՈՊՆԵՐԻ ՎԱՐՔԱԳԾԻ ԷՔՍՊԵՐԻՄԵՆՏԱԼ ՀԵՏԱԶՈՏՈՒՄԸ (ՀԱՑԱՍՏԱՆԻ «ՂԸՌ» ԿԻՍԱԱՆԱՊԱՏԱՅԻՆ ՀՈՂԻ ՕՐԻՆԱԿՈՎ)

Ամփոփում

Ուսումնասիրվել է ստրոնցիումի, ցեզիումի և ցերիումի ռադիոիզոտոպաների հողի կողմից կլանման և հողից արտամղման չափերն ու բնույթը, կախաված ելակետային լուծույթից (ջիմիական միացություններից, որոնց կազմում նրանք թափանցում են հողի մեջ, նրանց կլանված ձևերի տիպից (փոխանակաերին, ոչ փոխանակային, կոմպլեքսային և այլն), հողի հատկություններից և կառուցվածքից, ինչպես նաև արտամղիչ լուծույթների հատկություններից։

Ուսումնասիրությունները ցույց են տվել, որ՝ ստրոնցիում 90-ը թորած գրով պատրաստված լուծույթից և փորձարկվող Հողի A և B Հորիզոնների ջրային քաշվածքներից այդ նույն Հորիզոնների Հողի նմուշների կողմից կլանվում
կ միջին Հաշվով Հավասարաչափ (~85%), իսկ B/C և C Հորիզոններից վերցթած նմուշները այն կլանում են ջրային քաշվածքներից մոտ 2 անդամ ավելի,
թան թորած ջրի լուծույթից։ Ռադիոստրոնցիումը զգալիորեն ավելի քիչ կլանվում է ԷԴՏԱ-ի լուծույթից։

Բոլոր լուծիչներից և Հողի բոլոր Հորիզոնների կողմից Հաստատուն և լրիվ կլանվում է ցեղիում 137-ը։

Կլանման ամենափոթը Հաստատունություն նկատված է ցերիումի 144-ի Ճոտ, որը Համեմատաբար շատ կլանվում է Թորած ջրից, ավելի թիչ՝ ջրային թաշվածքներից և անհամեմատ քիչ՝ ԷԴՏԱ-ի լուծույթից։

Sr 90-ի, Cs 137-ի և Ce 144-ի արտամղման դեպքում, անկախ արտաժղիչ լուծույթի տեսակրց, մինիմալ քանակությամբ արտամղվում է ցեղիումը (0,1—6,6%), այն դեպքում, երբ ստրոնցիումն ու ցերիումը արտամղվում են բնդարձակ ինտերվալում 1,2—100% և 0,6—100% Համապատասխանորեն։

ЛИТЕРАТУРА

- 1. Антипов Каратаев И. Н., Цюрюпа И. Г. Почвоведение, 8, 1961.
- 2. Гегамян Г. В., Олешева Н. И. Радиация и организм, сб. мат. конф., г. Обнинск, 1967.

- 3. Клечковский В. М., Соколова Л. Н., Целищева Г. И. Докл. сов. уч. на П Международной конференции по мирному использованию атомной энергии. М., Из-во АН СССР, 1958.
- Тимофеев Ресовский Н. В., Титлянова А. А., Тимофеева Н. А., Махонина Г. М., Молчанова И. В., Чеботина М. Я. В кн. Радиоактивность почв и методы ее определения, М., 1966.
- 5. Тимофеева Н. А., Титлянова А. А. Изв. АН СССР, серия биол. 1, 1959.
- 6. Тимофеева Н. А., Титлянова А. А. Труды Уральск. отд. МОИП, 2, 1959.
- 7. Титлянова А. А., Тимофеева Н. А. Сборник работ Лаб. Биофизики, IV, Свердловск, 1962.
- 8. Титлянова А. А., Тюрюканов А. Н., Махонина Г. И. ДАН СССР, т. 133, 1960.
- 9. Միրիման յան Խ. Համառոտ ակնարկ Հայաստանի հողերի մասին, Երևան, 1953։
- Clark H. M. Science, v. 119, 619, 1954.
- 11. Kahn B. Analyt. Chem., 28, 2, 1956.
- 12. Sawhney B. L. Soil Sci. Soc. Amer. Proc., 29, 1, 1965.