20340406 002 чрепрезпробор ичичельные сизионать честивать систе АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР. БИОЛОГИЧЕСКИЙ ЖУРНАЛ АРМЕНИИ

т. XXI, №11, 19.8

К. С. АБРАМЯН

УЛЬТРАСТРУКТУРНЫЕ ОСОБЕННОСТИ СТРОЕНИЯ ЯДЕРНОИ ОБОЛОЧКИ И ВЗАИМООТНОШЕНИЙ ЯДРА И ЦИТОПЛАЗМЫ ПОСЛЕ ДЕЙСТВИЯ ПРОНИКАЮЩЕЙ РАДИАЦИИ

В настоящее время трудами многочисленных исследователей различных направлений, использующих световой микроскоп [11, 15], методы биохимического анализа [3, 24, 17], авторадиографию [18, 19] и электронную микроскопию [24, 14], создалось представление, что большинство важных метаболических процессов, происходящих в клетке, во многом зависят от взаимоотношений ядра и цитоплазмы.

При наличин светомикроскопических данных, касающихся морфологической стороны этих вопросов, многие ультраструктурные особенности остаются малоизученными. Работы, относящиеся к анализу упомянутой проблемы при различных функциональных состояниях клетки, немногочисленны. О некоторых результатах исследований взаимоотношений ядра и цитоплазмы в норме сообщалось ранее [2]. В настоящей работе прежние данные будут дополнены новыми, относящимися к специфическому функциональному состоянию клеток, вызванному сильным внешним воздействием. В качестве последнего было использовано действие гамма-лучей в дозе 20 кр при мощности 700 р/мин. Объектами исследования явились клетки слюнных желез личинок мотыля Chironomus tentans, подвергнутые действию радиации при тотальном облучении. Испсльзованные методы исследования не отличались от тех, посредством ксторых были выполнены предыдушие работы [1, 2].

Очевидно, что взаимоотношения ядра и цитоплазмы определяются во многом характером ультраструктуры кариоплазмы и свойствами ядерной оболочки, о субмикроскопическсй структуре которой в норме сообщалось ранее [1]. Целью настоящей работы явилось изучение тонкого строения ядерной оболочки и взаимоотношений ядра и цитоплазмы после ионизирующего облучения.

Результаты исследования. При рассечении периферических частей ядра в серии срезов были получены как поперечные, так и тангенциальные ссчения ядерной оболочки, образующей глубокие впячивания и выступы. Некоторые из ядерных выпячиваний, изображенные на приводимых электронных микрофотографиях и не отмеченные нами в норме, далеко вдаются в цитоплазму, достигая иногда до 8 µ в длину (рис. 1). Другие выпячивания ядра благодаря определенной ориентации в плоскости сечения оказываются в цитоплазме в виде островков и представляно собой отрезки мембран, далеко отстоящих от ядра и не обнаруживающих связи с ним (рис. 2). Отличить такие фрагменты мембран от многочисленных трубочек эргастоплазмы и отнести их к ядерной оболочке

позволяет характерная ширина межмембранного расстояния, соответствующая перинуклеарному пространству, прикрепление рибосом к одной из мембран и фибриллярных войлокоподобных масс — к другой (рис. 2).

Глубокие впячивания ядра, рассеченные поперек. оказываются граничащими с кариоплазмой в виде островков различной величины и конфигурации с включениями элементов эргастоплазмы. Иногда при подобных рассечениях ядерной оболочки встречается многократное чередование структур цитоплазмы и ядра в кариоплазме, свидетельствующее о наличии многочисленных ядерных впячиваний (рис. 3). В связи с этим на первый взгляд оказывается малопонятным нахождение в области хромосом элементов эргастоплазмы без окружения их ядерной оболочкой (рис. 5). Этот вопрос подробнее будет рассматриваться ниже.

Многие неровности ядерной оболочки, попадая в плоскость сечения по касательной, дают большое количество тангенциально рассеченных пор нередко на значительных площадях (рис. 11, 16, 17). Благодаря данному обстоятельству оказалась возможной их количественная оценка. Вычислив площадь поры и подсчитав их количество на определенном участке, определили площадь, занимаемую порами на 1 μ^2 и соответственно величину занимаемой ими площади на поверхности ядра, которая оказалась равной 20%. В данном случае под площадью, занимаемой порами, необходимо понимать плотность их распределения на единицу поверхности в плоскостном изображении ядерной оболочки.

В зависимости от плоскости прохождения среза тангенциально рассеченные поры выглядят по-разному. Если в толщу среза входит только ядерная оболочка, такие поры видны в виде четко очерченных колец, а площадь, свободная от них, и гранулы диаметром 500 А, видимые в просвете этих пор, характеризуются относительно большой электроннооптической плотностью (рис. 3, 4, 6). Если же кольцевидные поры диффузно контурированы, а межпоровые пространства и указанные гранулы обладают малой электроннооптической плотностью, это значит, что в плоскость сечения вошла часть ядерной оболочки и цитоплазмы (рис. 1, 3-4, 6). Иногда в таких участках цитоплазмы, наблюдаемых в области ядра, видны многочисленные свободно располагающиеся рибосомы. В случае тангенциального рассечения складок поры ядерной оболочки, частично вошедшие в плоскость среза, видны в виде сегментов (рис. 6). Диаметр пор на тангенциальных рассечениях равен 700 А, а на поперечных-580 А. Такое расхождение легко понять, если представить пору в виде по направлению к кариоконусовидного просвета, суживающегося плазме.

Гранулы диаметром 500 А. находящиеся в кариоплазме, которые особенно часто и в большем количестве встречаются после облучения в междисковых пространствах гигантских хромосом, переходят в цитоплазму. Об этом свидетельствует их наличие в просветах тангенциально (рис. 1, 3, 4, 6) и в особенности поперечно рассеченных пор (рис. 2, 7). В цитоплазме они встречаются в самых различных участках, нередко далеко отстоящих от ядра (рис. 7). При этом характер некоторых гранул меняется. Они становятся менее осмифильными, в особенности в центральной зоне, и тогда выглядят кольцевидными. К некоторым из них прикрепляются рибосомы. После облучения во всех исследованных сроках эти гранулы в цитоплазме встречаются значительно чаще и в гораздо большем количестве.

Если в норме как у данного объекта, так и в клетках культуры почечных тканей обезьяны мы находили перешедшими из ядра в цитоплазму только гранулярный компонент, то после облучения можно видеть выход фибриллярного материала (рис. 2, 7). Он имеет вид диффузных войлокоподобных масс, напоминающих таковые, контактирующих с внутренней поверхностью ядерной оболочки, но не те, которые разбросаны по всей кариоплазме в виде нитей, из которых состоят гигантские хромосомы.

В связи с изучением вопроса о взаимоотношениях ядра и цитоплазмы в данном случае является интересным рассмотрение организации мембран эндоплазматического ретикулума. Многочисленные его элементы, представленные в норме, после облучения получают большее развитие (рис. 7, 9). В различных участках цитоплзамы наблюдаются фигуры закрученных трубочек, а количество их нарастает при переходе от одного срока фиксации к другому. Так, через 1 час после облучения в основном встречаются двойные и тройные концентрически замкнувшиеся трубочки. В последующие сроки количество трубочек в таких образованиях увеличивается, и они принимают многомембранную форму, занимая значительные пространства в цитоплазме (рис. 8, 9). Очень часто большие участки, сплошь занятые сильно развитыми элементами эргастоплазмы, находятся в непосредственной близости от ядра.

Вместе с этим заметно расширяются площади, занимаемые рибосомами, что особенно хорошо видно в тех случаях, когда цистерны эргастоплазмы входят в плоскость сечения так, что их мембраны не выявляются. *Рибосомы, находящиеся на таких мембранах, кажутся лежащими сво*бодно и образуют большие поля. Часто удается видеть в полостях трубочек большую электроннооптическую плотность по сравнению с окружающей гиалоплазмой. Совокупность перечисленных признаков говориг в пользу сильного развития базофильного компонента цитоплазмы и соответственно создает впечатление деятельной работы аппарата белкового синтеза клетки.

Обсуждение результатов. Некоторого внимания заслуживает вопрос, связанный с интерпретацией картин с рассечениями ядерных впячиваний, называемых иногда внутриядерными включениями [7] или каналами [8, 13]. Необходимо отметить, что как то, так и другое наименования довольно неудачны, так как, нечетко характеризуя сущность этих образований, наводят на мысль о том, что они могут принадлежать внутреннему объему ядра. По сути же речь идет о картине, образованной рассечением ядерного впячивания, куда заходит часть цитоплазмы. В соответствия с уровнем прохождения среза вскрывается разная площадь таких впячи-

Рис. 1. Ядерное выпячивание, глубоко вдающееся в цитоплазму. Я-ядро.

Рис. 2. Выпячивания ядра, располагающиеся островками в цитоплазме.

Рис. 3. Поперечные рассечения впячиваний ядра с многократным чередованием области цито- и кариоплазмы.

Рис. 4. Область ядерных выпячиваний с тангенциально рассеченными порами. Рис. 5. Участок поперечных ядерных впячиваний и включение элементов эргастоплазмы в область хромосомы (Хр).

Рис. 6. Большое количество гранул диаметром 500 А. находящихся в кариоплазме, и тангенциально рассеченные в различных плоскостях ядерные поры. (→)—гранулы, вышедшие из ядра, (----→), находящиеся в просвете поры.

Рис. 7. Часть цитоплазмы с многочисленными гранулами днаметром 500 Л (→), вышедшими из ядра.

Рис. 8. Фрагмент цитоплазмы с закрученными каналами эндоплазматического ретикулума.

Рис. 9. Примыкающий к ядру участок цитоплазмы, с сильно развитыми мембранами эргастоплазмы.

ваний и различная картина соотношений ядерных и цитоплазматических компонентов. Так, может оказаться, что какое-либо впячивание (но не включение и не канал) окажется вблизи ядрышка. Но по справедливому замечанию Ченцова [10], вряд ли это может означать, что данное обстоятельство должно способствовать транспорту РНП из ядрышка в цитоплазму, как предполагают вышеуказанные авторы. Следуя таким предположениям, слишком многое пришлось бы приписать процессам простой диффузии при обмене веществами между ядром и цитоплазмой. Мы нередко наблюдали в различных клетках тесный контакт ядрышка с ядерной оболочкой, и, как правило, в подобных случаях отчетливого выхода материала из ядрышка в цитоплазму не отмечалось. Скорее можно говорить о миграции материала, отошедшего от ядрышка и свободно располагающегося в различных участках кариоплазмы, впоследствии переходящего в цитоплазму, как было показано ранее [2].

Следует отметить, что рассеченные ядерные впячивания обычно ограничены двойной ядерной оболочкой. Это в большинстве случаев является одним из доказательств принадлежности их цитоплазме. Однако на рис. 5 показана возможность наличия цитоплазматических структур в ядре без ограничения их ядерной оболочкой. Такие непривычные картины, трудно подаваясь интерпретации, заставляют иногда отказываться от отождествления подобных образований с ядерными инвагинатами [6]. Но все становится понятным, если строго представить плоскость прохождения среза через вершину впячивания ядра в месте возможного повреждения его оболочки. Такое повреждение может возникнуть в силу некоторой потери ею эластических свойств из-за глубокой инвагинации. Очевидно, именно такую часть цитоплазмы, заключенную в ядро и не отграниченную от его внутреннего объема ядерной оболочкой, следует относить к истинным внутриядерным включениям. Они встречаются очень редко и более характерны для патологического состояния клетки.

Увеличение поверхности ядра, наблюдаемое в особенности через 24 часа после облучения и выражающееся в сильной его изрезанности с образованием многочисленных неровностей, коррелирует с усилившимся выходом веществ из ядра в цитоплазму. По-видимому, этому процессу способствует в некоторой мере увеличившаяся проницаемость ядерной оболочки, поскольку известно, что в результате облучения проницаемость клеточных мембран повышается. Последнее обстоятельство, возможно является одной из причин, приводящей к выходу фибриллярного материала из ядра, что не наблюдается в обычных условиях.

Отдельный интерес представляет собой природа обмениваемых веществ. Исходя из светомикроскопических работ [11, 21, 22], показавших переход ядрышка и ядрышкового материала в цитоплазму, а также из результатов работ с применением методов авторадиографии [18, 19] и биохимии [23], можно предположить, что вышедшие из ядра гранулы представляют собой РНП. Данное предположение подкрепляется работой Крегера с соавторами [20], в которой отражены результаты экспери-

К. С. Абрамян

ментов, проведенных на изучаемом нами объекте. Они показали невозможность перехода в цитоплазму хроматинового материала и ядерных белков. Это доказывалось тем, что меченные ядерные белки и хроматин, будучи перенесенными в цитоплазму других клеток, оказывались впоследствии в ядре. Данные в пользу РНП характера веществ, поступающих из ядра в цитоплазму, приводятся и в другой работе [12], автор когорой, изучая активность пуффов в гигантских хромосомах слюнных желез личинки мотыля, нашел, что гранулы РНП, образующиеся в ядре и отличающиеся от рибосом, содержат быстрометящуюся РНК, которая могла быть информационной. Очевидно, что речь идет о гранулах диаметром 500 А. Фибриллы, перешедшие из ядра в цитоплазму, возможно, представляют собой ДНП. Выход подобных веществ из ядра после облучения описан в литературе [4].

Исходя из того положения, что специфические белки и цитоплазматическая РНК синтезируются при участии РНК ядра, [9], можно предположить, что усиленное развитие эндоплазматического ретикулума, наблюдаемое нами в различные сроки после облучения, связано с более эффективным поступлением ядерных продуктов в цитоплазму.

Примечательно, что недавно М. Н. Мейсель с сотрудниками [5] также сообщили о наблюдаемом ими некотором развитии эндоплазматического ретикулума в дрожжевых клетках после облучения. Данное явление, по мнению авторов, характеризует потребность в удалении продуктов распада. Однако необходимо отметить и другую не менее важную функцию эндоплазматического ретикулума — участие в синтезе специфических белков, изменение которой после облучения может быть обусловлено усилившимся поступлением веществ из ядра в цитоплазму, описанное в настоящей работе.

Институт экспериментальной биологии АН АрмССР

Поступило 9.Х 1968 г.

Կ. Ս. ԱԲԲԱՀԱՄՑԱՆ

ԿՈՐԻՉԻ ԹԱՂԱՆԹԻ ԿԱՉՄՈՒԹՅԱՆ ՈՒԼՏՐԱՍՏՐՈԻԿՏՈՒՐԱՅԻՆ ԱՌԱՆՁՆԱՀԱՏԿՈՒԹՅՈՒՆՆԵՐԸ ԵՎ ԿՈՐԻՉԻ ՈՒ ՑԻՏՈՊԼԱՉՄԱՅԻ ՓՈԽՀԱՐԱԲԵՐՈՒԹՅՈՒՆՆԵՐԸ ՆԵՐԹԱՓԱՆՑՈՂ ՌԱԴԻԱՑԻԱՅԻ ԱՉԴԵՑՈՒԹՅՈՒՆԻՑ ՀԵՏՈ

Ամփոփում

Chironomus tentans Թրթուրների Թքագեղձերի բջիջների ուսումնասիրությունը, որը կատարված է 20 կո դողայով տոտալ գամմա Ճառագայթումից 1,6, 24 և 48 ժամ հետո ցույց է տալիս, որ տեղի է ունեցել կորիղի մակերեսի մեծացում, նրա Թաղանթի բաղմաթիվ անհարթությունների առաջացման հետևանբով։ Այդ պատՃառով առաջ են գալիս մեծ քանակությամբ տանգեցիալ Ճեղըված ծակոտիներ։

90

Հայտնաբերված է կորիզային պրոդուկտների՝ 500 A տրամագիծ ունեցող պրանուլաների ցիառպլազմայի մեջ ավելի էֆեկտիվ ներխափանցում նորմայի Համեմատությամբ և էնդոպլազմատիկ ռետիկուլումի ավելի ուժեղ զարգացում։

ЛИТЕРАТУРА

- 1. Абрамян К. С., Рейнгольд В. Н. Изв. АН Арм. ССР, 18, 6, 87, 1965.
- 2. Абрамян К. С., Рейнгольд В. Н. ДАН СССР, 161, 6, 1431, 1965.
- 3. Браше Ж. Биохимическая цитология. М., 1960.
- 4. Королев М. Б., Нейфах А. А. Журн. общей биол., 26, 3, 352, 1965.
- 5. Мейсель М. Н., Бирюзова В. П., Медведева Г. А., Помошникова Н. А., Мантейфель В. М. Докл. на сессии Общего собрания Отд. биох., биофиз. и химии физиол. активных соединений АН СССР 27—29 октября 1965 г. Москва.
- 6. Митюшин В. М. Цитология, 4, 5 506, 1962.
- 7. Митюшин В. М. Биофизика, 7, 3, 368, 1962.
- 8. Митюшин В. М. Ультраструктура раковой клетки на примере клеток асцитной карциномы Эрлиха. Атлас. М., 1964.
- 9. Спирин А. С. Информационная РНК и биосинтез белка. М., 1962.
- Ченцов Ю. С. Электронная микроскопия опухолевых клеток. В кн.: Биология злокачественного роста. М., 1965.
- 11. Altmann H. W. Klin. Wochenschr., 33, 13-14, 306, 1955.
- 12. Beermann W. Erwin-Baur-Gedächtnis vorlesungen, Acad. Verlag. Berlin, 111, 211, 1963.
- 13. Bernhard W. Cancer Res., 18, 491, 1958.
- 14. Bernhard W. Exp. Cell Res., suppl., 6, 17, 1959.
- H5. Casperson T. In.: The molecular control of cellular activity. N. Y.—London, p. 127, 1962.
- 16, Danielli T. E. Exp. Cell Res., suppl., 6, 252, 1959.
- 17. Errera M., Ficq A., Log an R., Skreb J. Exp. Cell Res. suppl., 6, 268, 1959.

18. Goidstein L. In.: Cell Growt and Gell Division N. Y.-London, 129, 1963.

- 19. Kyte J. Zellforsch., 62, 435, 1964.
- 20. Kroeger H., Jacob., Sirlin J. L. Exp. Cell Res., 31, 416, 1963.
- 21. Magrrot T., Sova J. Naturwissenschaften, 49, 16, 381, 1962.
- 22. Pi.a A. M. Experientia, 20, 10, 550, 1964.
- 23. Studzinski G. P. Nature, 203, 4947, 883, 1964.
- 24. Wischnitzer S. Intern. Rev. Cytol., 10, 137, 1960.