т. X X I, № 11, 1968

М. А. ТЕР-КАРАПЕТЯН, С. П. ОГАНЕСЯН, А. М. ТЕР-КАРАПЕТЯН

ОБМЕН АМИНОКИСЛОТ У ДРОЖЖЕЙ РОДА CANDIDA

3. Влияние длины углеродной цепи и расположения аминной группы на проникновение и накопление аминокислот в дрожжевых клетках*

Проникновение веществ через мембрану живых клеток обеспечивается двумя дополняющими друг друга механизмами: пассивный перенос, происходящий в основном путем диффузии или проталкиванием молекулами воды, и активный перенос, осуществляемый при помощи особых «транспортных систем», уподобленных некоторыми исследователями ферментам или ферментоподобным катализаторам [7, 15].

Характерным для пассивного переноса является то, что проникновение продолжается до тех пор, пока концентрация частиц по обеим сторонам мембраны достигает уровня, определяемого законом доннановского равновесия [9].

Механизм пассивного переноса не объясняет важнейших сторон явлений проницаемости как передвижения веществ против градиента кончентраций с накоплением их на уровне, иногда намного превышающем таковой во внешней среде. Он не объясняет специфичности проникновения в зависимости от структурных особенностей (изомерия, замещения) частиц, обладающих одинаковыми молекулярными размерами, а также коррелятивность между интенсивностью проникновения и энергетическими процессами клетки [12]. Последним рядом явлений доказано, что проникновение в клетки неорганических ионов, моносахаридов, аминокислот и др. сильно подавляется при воздействии ингибиторов дыхания, брожения, окислительного фосфорилирования как КСN, ICH₂COOH, 2,4-ДНФ и др.

Все эти стороны процессов проникновения можно истолковать участием ферментоподобных катализаторов, действующих на уровне клеточной мембраны.

С точки зрения теории активного перенсса, особенно убедительными **ЯВЛЯЮТСЯ** факты, устанавливающие, что скорость прохождения аминокислот через мембрану клеток (слизистую оболочку кишечника) намного превышает скорость диффузии, а также зависимость интенсивности проникнорения от физиологического состояния клетки ряда микроорганизмов [9, 12, 17].

По механизму проницаемости за последние годы была выдвинута новая гипотеза, сформулированная под названием «облегченной диффу-

^{*} Сообщение 1 и 2-ое см. «Биологический журнал Армении», №№ 1 и 9, т. **XXI**, 1968 г.

зии», согласно которой перенос веществ в клетки происходит путем обратимого связывания молекул субстрата с особой (органической) системой, переносящей частицы с одной поверхности мембраны на другую [13, 16].

Полагается, что перенос комплекса носитель-субстрат через мембрану осуществляется либо по механизму теплового движения, либо путем изменений конфигурации носителя.

По своей первоначальной формулировке «облегченная диффузия» считается вариантом пассивного транспорта, не требующего энергии [15]. Однако, если допустить, что активация переносчика происходит с помощью АТФ, то можно прийти к выводу, что транспорт через клеточную мембрану осуществляется при помощи совместно действующих факторов пассивного и активного переноса.

Изучение как пассивных, так и активных процессов, лежащих в основе клеточной проницаемости, приводит к разграничению «сфер» действия каждого из этих механизмов и к разработке единой теории проницаемости, основанной на участии обеих групп процессов. Особый интерес в разрешении этих вопросов представляет изучение взаимоотношений между структурой субстратов и закономерностями их проникновения.

В настоящее время установлены некоторые факты, показывающие влияние структуры на скорость проникновения и уровень накопления аминокислот у бактерий. Однако имеющиеся данные недостаточно освещают специфичность таких явлений, как зависимость проникновения от структуры углеродного скелета (его длина и разветвление), от амфотерных свойств аминокислот и др.

Представления о механизме активного переноса аминокислот через клеточные мембраны осложняются еще больше выявлением таких факторов, как групповая специфичность транспортных систем к нескольким субстратам как валин, лейцин, изолейцин [8], аргинин, лизин [10, 11].

Настоящая работа преследует цель исследовать влияние длины углеродного скелета и позиции NH_2 функциональной группы в молекуле аминокислот на скорость проникновения и уровень накопления их у представителей рода Candida. Этот вопрос еще мало изучен, в частности, у дрожжевых организмов, и его изучение даст новые факты, способствующие выяснению сущности механизма активного переноса через клеточную мембрану.

Методика

Объектом исследования служили представители дрожжей рода Candida — C. guilliermondii, C. guilliermondii membranaefaciens, полученные из отдела типовых культур Института микробиологии АН СССР (проф. В. И. Кудрявцев).

Для изучения проникновения в качестве субстратов применялись следующие DL-аминокислоты (АК): в первой серии опытов α -аминомасляная (α -AMK), γ -аминомасляная (γ -AMK), кислоты, во второй серии опытов гомологичные ряды α -аминокислот— α -аланин, α -AMK, α -аминовалеряновая (α -ABK), α -аминокапроновая (α -AKK) кислоты и ω -аминокислот- β -аланин, γ -AMK, δ -аминовалеряновая (δ -ABK) и ε -аминокапроновая (ε -AKK) кислоты.

Подготовка культур к опытам проводилась следующим способом: музейные культуры, храннвшиеся на 1,5—2% сусле-агаре, выращивались в аэробных условиях на круговой качалке (200 об/мин) в жидкой синтетической среде следующего состава: глюкоза—10 г, $(NH_4)_2SO_4$ —3,1 г, KH_2PO_4 —1,23 г, $MgSO_4$ 7 H_2O —0,625 г, $CaCl_2\cdot 2H_2O$ —0,125 г, NaCl—0,125 г, биотин—8 мкг).

В конце цикла роста культуры, завершаемого в течение 18—20 часовой инкубации, биомасса отделялась центрифугированием, подвергалась азотному голоданию [5] путем инкубирования в термокамере на кругозой качалке в 2% растворе глюкозы до расхода последней (48—50 час.); голодание продолжалось на дистиллированной воде при этих же условиях инкубации в течение 16—18 час.

Путем такой обработки содержание общего азота в исходной биомассе падает от 6-8 до 2.5-3.5% (к абс. сух. веществу) со снижением аминокислот запасного фонда до едва заметных количеств, кроме α -аланина и глутаминовой кислоты. Такая культура является весьма удобным объектом для изучения проникновения и накопления метаболитов в клетке.

Биомасса использовалась в виде суспензии в фосфатном буфере M/15 (pH:5,5—5,8), содержащем 0,06 м NaCl (3,9 г на 1 л) [6] с густотой в пределах 9,6—17 мг (сух. ьещества) в 1 мл. В такую суспензию вносились аминокислоты в расчете от 47 ± 2 мМ в 1 л.

Инкубация в присутствии аминокислот проводилась в термостате при 30 ± 0.2 С; пробы для оценки проникновения и накопления брались в сроки 5, 30, 60 мин. Отобранная проба, содержащая 31-37 мг сух. вещества, тут же дважды промывалась холодым 0,15 м раствором NaCl.

Для анализов брались 0,2 мл из отдельных экстрактов. Уровень накопления аминокислот определялся в сроки 5, 30, 60 мин. после начала инкубации. Результаты выражались в микромолях (мкМ) в 100 мг сухих дрожжей.

Скорость накопления аминокислот (V) определялась в интервалах 0-5, 5-30, 30-60 мин. по формуле: проникнувшая аминокислота (мкм): мг дрожжей (сух. вещества): продолжительность интервала (мин.); учитывалась в основном V в интервале 0-5 мин.

Степень концентрирования аминокислот в клетке оценивалась по отношению концентрации накопленной в клетках аминокислот—конц. кл. (с учетом содержания 75% влаги) к концентрации во внешней среде—конц. ср.

Проникновение и накопление α-AMK, γ-AMK, α,γ-AMK v Candida guilliermondii membranaefaciens

Исследуемые аминокислоты представляют интерес в том отношении, что C. guilliermondii membranaefaciens расщепляет глюкозу в присутствии γ -AMK и (NH₄)₂SO₄ после прохождения лаг фазы не больше 2—3 час. [2, 3], а в присутствии α -AMK и α , γ -AMK соответственно 22—26 и 45—50 час. (рис. 1).

Таким образом, опыты проводятся с суспензией в состоянии «покоя» клеток [5]. Нужно также отметить, что углеродный скелет γ -АМК хорошо усваивается этой культурой в присутствии глюкозы, в то время как α -АМК и α,γ -АМК, наоборот, сильно подавляют у нее усвоение углеродного скелета глюкозы, в силу чего роста почти не происходит биомассы. Результаты опытов приведены в табл. 1.

Полученные данные показывают, что все три аминокислоты проникают и накапливаются в клетках С. guilliermondii membranaefaciens независимо от их усвояемости.

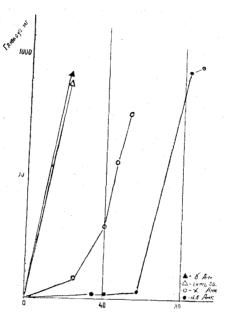


Рис. I. Candida guilliermondii membranaefaciens. Динамика расщепления глюкозы в присутствии HN_4^+ , α -, γ -, $\alpha\gamma$ -аминомасляной кислоты.

Концентрация субстрата в среде: α-АМК, γ- АМК—45 мМ, α, γ-АМК—34 мМ в указанных весовых количествах. Инкубированная биомасса 85 мг (оп. 42) 150 мг (оп. 24) в 15 мл буфера

в то ми буфера								
№ и дата о пытов	Субстрат (мг)	ижитель- инкубации	В отсут	ствии г.	люкозы	При наличии глюкозы		
		Продолжитель- ность инкубац в мин.	АК мкМ в 100 мг су- хих дрож- жей	V в мкМ 1 мг/мин ×103	конц _{кл.}	АК мкМ в 100 мг. су- хих дрож- жей	V в мкМ 1 мг/мин. ×103	конц. _{кл.} конц.ср.
18. XI 1965	α-AMK 70	5 30	9,6 16,0	19,4 2,4	0,55 0,84	5,8 10,7	11,6 1,8	0,30 0,56
on. 24	γ-АМК 70	60 5 3 0	$ \begin{array}{c c} 14,4 \\ 1,3 \\ 12,3 \end{array} $	0,5 2,6 7,2	0,75 0,06 0,60	11,8 3,1 17,0	1,8 0,3 6,2 1,2 1,2	$\begin{bmatrix} 0,62\\0,16\\0,90 \end{bmatrix}$
	α, γ-ΑΜΚ 55	60 5 30	14,3 2,7 3,4	0,5 5,3 0,3 0,9	0,75 0,21 0,27	$\begin{array}{c c} 17,0 \\ 2,3 \\ 7.7 \end{array}$	4.6	0,90 0,18 0,30
22. V 1966	α-AMK 70	60 5 30	6,4 3,5 7,1	7,0	0,44 0,18 0,37	6,0 1,8 5,8	2,1 0,0 3,5 1,5	0,48 0,09 0,30 0,34
оп. 42	γ-ΑΜΚ 70	60 5 30	9,5 0,9 4,2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,50 0,05 0,02 0,35	6,6 0,8 6,8	1,5 0,2 0,3 2,3 1,8 2,5 0,8	$0,04 \\ 0,35$
	α,γ-ΑΜΚ 55	60 5 30 60	6,8 1,1 1,7 3,3	1,2 0,8 2,2 0,2 0,5	0,35 0,08 0,26 0,30	12,4 1,2 3,4 4,1	2,5 0,8 0,17	0,65 0,10 0,30 0,33
		_ ~~	,,,,	1 . ","	1 7,00		1 ,,,,	1,55

В отсутствии глюкозы скорость проникновения аминокислот располагается в убывающем порядке — α -AMK> α , γ -AMK $>\gamma$ -AMK, а уровень их накопления в порядке — α -AMK $>\gamma$ -AMK $>\alpha$, γ -AMK.

В присутствии глюкозы скорость проникновения резко замедляется для трудноусвояемой α-АМК и несколько стимулируется для хорошо усвояемой γ-АМК, существенно не меняется для α, γ-АМК; глюкоза значительно повышает уровень накопления γ-АМК, понижает уровень α-АМК в клетках и несущественно действует на накопление α, γ- АМК.

Проникновение и накопление α -AMK, γ -AMK и α , γ -AMK y Candida guilliermondii

Эта культура в присутствии γ -АМК в отличие от предыдущей расщепляет глюкозу почти с такой же скоростью, как в присутствии (NH₄)₂SO₄ после прохождения лаг фазы, не превышающей 2—3 час. При α -АМК лаг фаза продолжается до 8—10 час.; культура не усваивает α , γ -АМК.

У С. guilliermondii углеродный скелет γ -АМК слабо усваивается, α -АМК не препятствует усвоению углерода глюкозы (Е. Багдасарян — неопубликованные данные).

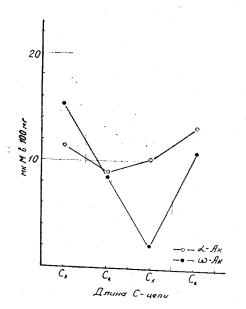
Таким образом, в исследуемые сроки проникновение всех трех аминокислот происходит в состоянии «покоя» клеток. Кроме того, культура показывает менее отрицательное отношение к α -аминокислотам. Результаты опытов приведены в табл. 2.

Полученные данные показывают, что как в отсутствии так и в присутствии глюкозы скорость проникновения трех исследуемых соединений располагается в порядке— α -AMK> α , γ -AMK> γ -AMK, а уровень их накопления— γ -AMK> α -AMK> α -AMK

У этой культуры также нет прямой коррелятивной связи между усвояемостью и скоростью проникновения аминокислот в клетки. Глюко- за значительно замедляет скорость проникновения трудноусвояемой α -АМК, в то время как она несколько стимулирует скорость проникновения хорошо усвояемой γ -АМК. На темпы проникновения α , γ -АМК глюкоза не оказывает существенного влияния.

Как у предыдущей культуры, у С. guilliermondii глюкоза несколько повышает уровень накопления α -АМК и α , γ -АМК, но в этом случае она повышает также уровень α -АМК. Последний факт хорошо коррелирует с лучшим усвоением α -АМК у С. guilliermondii.

Проникновение и накопление H-аминокислот гомологических рядов в зависимости от α - или концевого (ω —) положения аминной группы в молекуле


Исследования проводились у С. guilliermondii membranaefaciens рядами α -Ала, α -АМК, α -АВК, α -АКК и β -Ала, γ -АМК, δ -АВК и ϵ -АКК. Результаты исследования приведены в табл. 3 и на рис. 2 и 3.

Полученные данные показывают, что гомологические ряды амино-

Таблица 2 Проникновение и накопление α -АМК, γ -АМК и α , γ -АМК в клетках C. guillierm ondification концентрация субстрата в среде: α -АМК, γ -АМК—45 мМ, α , γ -АМК—34 мМ в указанных количествах. Инкубированная биомасса: 237 мг (оп. 39)% и 27 мг (оп. 41) в

15 мл буфере

		ль- ации	В отсут	ствии	глюкозы	При наличии глюкозы.		
№ и дата опытов	Субстрат (мг)	Нродолжитель- ность инкубации в мий.	АК мкМ в 100 мг су- хих дрож- жей	V в мкМ 1 мг/мин ×103	конц.кл. конц.ер.	АК мкМ в 100 мг сухих дрож-	V в мкМ в 1 мг/мин X103	конц.кл. конц.ср.
7.IV 1966	α-AMK-7 0	5 30	6,8 8.2	13,6 0,5	0,36 0,43	5,0 9,1	9,7	0,26 0,48
оп. 39	γ-ΑΜΚ 70	60 5 30	6,8 8,2 8,7 2,0 10,7 15,3	$\begin{bmatrix} 0,1\\4,0\\3,0 \end{bmatrix}$	0,45 0,10 0,46 0,80	10,5 1,6 10,8	5,0 3,3 3,6 1,8	0,55 0,10 0,56 0,87
	α, γ-ΑΜΚ 60	60 5 30 60	1,8 2,9 3,0	1,4 3,6 0,4	0,14 0,23 0,24	16,5 1,7 2,6 4,3	3,4 0,3 0,5	0,13 0,21 0,35
13 .IV 1966	α-ΑΜΚ 7 0	5 30	$\frac{3,5}{7.9}$	0,4 0,5 7,0 1,7	0,18 0,41	2,3 7,6	4,6 2,3	0,12 0,40
on. 41	γ-АМК 70	60 5 30	8,0 1,5 7,6 10,5	$\begin{bmatrix} 0,1\\ 2,9\\ 2,0 \end{bmatrix}$	0,42 0,08 0,40	2,3 7,6 9,7 1,7 10,6 12,1	0,6 3,5 3,6 0,5 4,8	0,50 0,09 0,55 0,64
	α, γ-ΑΜΚ 55	60 5 30 60	2,2 2,6 4,7	0,9 4,4 1,6 0,6	0,55 0,18 0,21 0,37	2,4 3,5 6,6	4,8 0,3 0,8	0,19 0,28 0,53

Fuc 2. Накопление α и ω-аминокислот y Candida guilliermondii membranae-faciens (опыт 76).

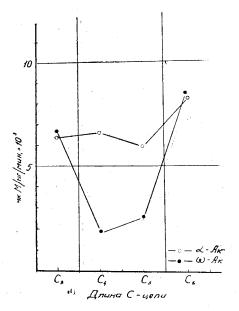


Рис. 3. Скорость проникновения α- ω-аминокислот y Candida guilliermondii membranaefaciens (опыт 76).

Таблица 3 Проникновение и накопление Н-аминокислот гомологических рядов в зависимости от расположения NH₂-группы.

Концентрация субстрата в среде: 45 мМ в указанных несовых количествах. Инкубированная биомасса 115 мг (оп. 75), 140 мг (оп. 76) в 15 мл буфере в отсутствии глюкозы

				-			
	ации	Опыт	75 29.V.	1967 г.	Опыт 76 30.V.1967 г.		
Субстрат (мг)	Продолжитель- ность инкубации в мин.	АК мкМ в 100 мг су- хих дрож- жей	в мкМ 1 мг/мин: X10 ³	конц.кл,	АК мкМ в 100 мг су- хих дрож- жей	в мкМ 1 мг/мин. ×103	конц _{-кл.} конц _{-ср.}
а-Ала 60	5 30 60	5,0 13,0 13,8	10,1 2,9 0,2	0,30 0,72	3,2 11,2	6,4 3,1	0,18 0,60
β- Ала 60	5 30 60	6,8 15.1	13,5 3,2 1,7	0,76 0,38 0,86 1,20	11,2 11,5 3,3 9,1 15,3	0,1 6,7 2,2 2,2 6,6 1,3	0,64 0,18 0,50 0,85
α-AMK 70	3 0	21,3 5,7 8,8 9,3	10,1 1.4 0,19	0,30 0,48 0,50	3,3 8,6 8,9	6,6 1,3 0,87	0,18 0,50 0,50
γ-AMK 70	60 30 60	0,0 9,3 0,8 4,6 7,7 5,8 8,8 10,6	1,7 1,4 0,9	0,05 0,25 0,42	0,9 5.4	1,8 1,4 1,0	0,08 0,30 0.50
α-ABK 84	5 30	5,8 8,8 10.7	11,1 1,1	0,30 0,46 0,56	8,6 3,0 8,0 10,2	5,9 1,1 0,69	0,16 0,40 0,50
б-АВК 84	60 5 30 60	1,6 2,6 3,8	0,6 3,2 0,17 0,6	0,08	1,4 1,7 2,1	2,6 0,08 0,08	0,07 0,09 0,11
α-AKK 90	5 30 60	6,0	11,4 2.0	0,32	4,1 11,1 13,1	8,1 2,7 0,6	0,20 0,60 0,70
ε-АКК 90	5 30 60	12,0 5,1 9,7 10,3	0,3 9,9 1,3 0,2	0,06 0,25 0,52 0,56	1,9 9,8 10,8	8,4 2,2 0,3	0,20 0,50 0,60

кислот с α -NH $_2$ и ω -NH $_2$ группами подчиняются совершенно разным закономерностям как по скорости проникновения, так и по уровню накопления. В первые 5 мин. инкубации аминокислоты α -NH $_2$ ряда проникают почти с одинаковой скоростью, что позволяет выдвинуть гипотезу о едином механизме их переноса через мембрану. Аминокислоты ω -NH $_2$ ряда проникают со скоростью, сильно варьирующей в зависимости от длины углеродного скелета; при этом, скорости проникновения γ -АМК и δ -АВК минимальны. Такая специфичность скорости проникновения отдельных членов ω -гомологического ряда указывает на вероятность участия активного механизма, характерного для ферментоподобного катализатора, участия пассивных и активных механизмов в процессе проникновения.

Резкие изменения уровня накопления между аминокислотами гомологических рядов с концевой NH_2 группой можно считать другим важным фактом, указывающим на участие активного механизма в процессе их накопления. Наоборот, относительно малые изменения в уровне накопления отдельных членов ряда α -аминокислот указывают на то, что «активный» механизм не играет ведущей роли в этом процессе.

Обсуждение результатов. Полученные данные рассматриваются с точки зрения коррелятивной связи между процессами, связанными с усвоением и проникновением аминокислот, сравнения и взаимообусловленности скоростей проникновения и уровня накопления отдельных АК, участия пассивных и активных механизмов в процессе проникновения.

Сравнение ныне представленных и ранее полученных в нашей лаборатории [2—4] данных указывает на отсутствие коррелятивной связи между, с одной стороны, показателями усвоения азота и углеродного скелета отдельных аминокислот, расщепления глюкозы и дыхания в их присутствии, с другой, — показателями проникновения отдельных членов гомологических рядов аминокислот.

Отсутствие коррелятивности особенно наглядно на примере C. guilliermondii membranaefaciens, у которой все аминокислоты α -ряда, как источники азота, особенно α -АМК, показывают по сравнению c (NH₄)₂SO₄ низкие показатели усвоения, а аминокислоты ω -ряда значительно лучше усваиваются по сравнению c соответственными α -изомерами; из них— γ -АМК отличается тем, что в присутствии глюкозы она действует c такой же интенсивностью, как (NH₄)₂SO₄ (рис. 1).

Более того, данные показывают, что интенсивность проникновения не является фактором, ограничивающим включение аминокислот в обмен клеток. Отсутствие прямой коррелятивной связи наблюдается также между дыханием клеток и проникновением аминокислот α - или ω -ряда. Так, например, α -АМК в фосфатном буфере в отсутствии глюкозы проникает в клетки в 5 раз быстрее и накапливается на 60-ой мин. на $20\,\%$ больше, чем γ -АМК (табл. 1). Тем не менее она стимулирует дыхание по абсолютным данным на $21\,\%$ меньше и по отношению к единице веса проникнувшей аминокислоты в 7—3 раза меньше γ -АМК [4].

Данные по гомологичным рядам аминокислот (табл. 3, рис. 2, 3) по-казывают противоположную картину в интенсивности проникновения аминокислот рядов (кроме β -Aла) по сравнению с их α -изомерами. Специфичность скорости проникновения отдельных аминокислот ω -NH2 ряда у C. guilliermondii membranaefaciens указывает на участие специфических транспортных систем для каждой из них. В противоположность этому проникновение аминокислот α -NH2 ряда не позволяет делать вывода об активной или пассивной природе действующего механизма.

Аминокислоты α -NH $_2$ и ω -NH $_2$ ряда отличаются также по темпам и уровням накопления в клетках обеих культур, что хорошо иллюстрируется на рис. 4.

Значительным отличием между двумя культурами является снижение уровня накопления α -AMK и повышение уровня γ -AMK в присутствии глюкозы у C. guilliermondii membranaefaciens, в то время как у C. guilliermondii глюкоза слабо стимулирует накопление обеих аминомасляных кислот.

В данном случае стимулирование в присутствии глюкозы можносчитать признаком взаимообусловленности процессов накопления амино-

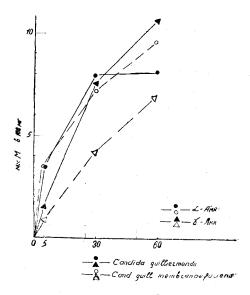


Рис. 4. Динамика накопления α-AMK, γ-AMK у двух культур дрожжей рода Candida (опыт 41, 42).

кислот и метаболизма клетки, т. е. признаком активного переноса и на-копления.

В связи с ранее описанным явлением антагонизма между α-АМК и γ-АМК в процессе размножения С. guilliermondii membranaefaciens [2, 3] нами были поставлены опыты с целью выяснения, имеет ли место антагонизм на уровне клеточной мембраны, т. е. в процессе проникновения. Результаты этих опытов приведены в табл. 4.

Полученные данные показывают, что в интервале первых пяти минут инкубации γ -AMK только частично подавляет проникновение α -AMK, в то время как α -AMK полностью прекращает проникновение γ -AMK. Даже в случае когда во внешней среде создается соотношение концентрации $\frac{\gamma - AMK}{\alpha - AMK} = \frac{4}{1}$, проникновение γ -AMK наступает только после 30 минут от начала инкубации и далеко не достигает уровня накопления 4-х кратной концентрации γ -AMK в отсутствии α -AMK.

Механизм такого взаимного подавления между изомерами аминомасляных кислот трудно объяснить. Наблюдаемые при совместном присутствии обоих изомеров в среде расхождения в скорости проникновения α -АМК и γ -АМК и факт о полном подавлении переноса γ -АМК через мембраны дают возможность допустить гипотезу, что в случае обеспечения транспорта обеих форм АМК при помощи одной и той же системы, последняя показывает больше сродства с α -АМК, чем с γ -АМК, может быть и α -NH $_2$ группа (скорее чем γ -NH $_2$) участвует в какой-то мере в связывании аминокислоты с транспортной системой.

Полученные на этом этапе данные указывают в основном пути дальнейшего разрешения вопроса: антагонизм или конкуренция между

Биологический журнал Армении, XXI, № 11—2

Таблица 4 Взаимообусловленность проникновения α -АМК и γ -АМК в клетки С. guilliermondii (опыт 44, 26.V.66 г.).

Концентрация субстрата при инкубации: 1—47 мМ, IV—4×47мМ. Инкубированная биомасса 164 мг в 15 мл буфере

Субстрал	Продолжи- тельность инкубации мин	АК в 100 мг сухих дрож- жей мкМ		конц. _{кл.} конц. _{ср.}
а-АМК І	5 30	0,54	1,08 0,14	0,03 0,05
ү-АМК І	60 5 30 60	2,70 0,30 2,00 3,40	0,60 0,60 0,70 0,46	0,14 0,001 0,10 0,18
α -AMK I+ γ -AMK I, α -AMK	5 30 60	0,27 0,68 0,68	0,54 0,16 0	0,001 0,04
ү-АМК	5 30 60	0,68 0 0 0	0 0 0	0;04
γ-AMK IV	5 30 60	0,43 2,10 6,30	0,86 0,67 1,40	0,05 0,03 0,80
α-AMK I+ γ -AMK IV, α-AMK	5 30 60	0,27 0,40 0,65	0,54 0,05 0,08	0,001 0,02 0,03
γ-АМК	5 30 60	0,00	0,00	0,03

 α -АМК и γ -АМК имеют место только в процессе переноса, или это распространяется также на процессы накопления.

Наконец, данные по проникновению α , γ -AMK в клетки обеих культур, показывающих невосприимчивость этого субстрата клетками дрожжей рода Candida, противоположны имеющимся наблюдениям о клетках саркомы Эрлиха, показывающих способность накапливать высокие концентрации α , γ -AMK [14].

Таким образом, накопление диаминокислот нельзя считать общераспространенным свойством, присущим клеткам разной систематической принадлежности.

Совокупность полученных результатов, в частности, по межвидовым особенностям и по гомологическим рядам α - и ω -аминокислот, представляет новые факты к объяснению активного или пассивного механизма проникновения и накопления аминокислот в дрожжевой клетке.

Ереванский государственный университет, кафедра биохимии и лаборатория технической биохимии

Поступило 20.IV 1968 г.

Մ. Ա. ՏԵՐ-ԿԱՐԱՊԵՏՅԱՆ, Ս. Պ. ՀՈՎՀԱՆՆԻՍՅԱՆ, Ա. Մ. ՏԵՐ-ԿԱՐԱՊԵՏՅԱՆ

ԱՄԻՆԱԹԹՈՒՆԵՐԻ ՆՅՈՒԹԱՓՈԽԱՆԱԿՈՒԹՅՈՒՆԸ CANDIDA ՑԵՂԻ ԽՄՈՐԱՍՆԿԵՐԻ ՄՈՑ

3. Ածխածնային շղթայի եւկաբության և ամինային խմբի դիրքի ազդեցությունը ամինաթթուների նեւթափանցման ու կուտակման վբա` խմուասնկային բջիջներում

Ամփոփում

Շաքարների, ամինաթթերւների, ինչպես նաև մյուս մետաբոլիտների ներթափանցման վերաբերյալ մինչև օրս ընդունված ամենահավանական տեսությունը՝ դա «պասսիվ» և «ակտիվ» մեխանիզմների զուդակցման հիպոթեղն է։

Մեր նպատակն է եղել պարղաբանել ներթափանցման Տիմբում ընկած ֆիդիկո-բիմիական՝ պասսիվ և կենսաբանական՝ ակտիվ մեխանիզմների դերը ամինաթթուների թափանցման արագության և կուտակման վրա Candida ցեղի խմորասնկային բջիջներում։

Հետազոտվել է՝ 1. α-ամինակարադաննվել (ԱԱԿԹ), ~-ամինակարադաննվել (ԳԱԿԹ), α, ~-ամինակարագաննվել (ԱԳԱԿԹ) ճերնականցումը և կուտակումը C. guilliermondii membranaefaciens-ե և C. guilliermondii-ի մոտ (աղ. աղ. 1, 2, 2. α և ա-հոմոլոգ շարջերի ամինանննուների ներնափանցումը և կուտակումը C. guilliermondii membranaefaciens-ի բջիջներում (աղ. նկ. նկ. 2—4)։

Կատարված հետազոտություններից հետևում է՝

1. C. guilliermondii membranaefaciens-ի մոտ գլյուկողի բացակայությամբ ամինակարգաթթուների ներթափանցման արագությունն ընթանում է հետևյալ հերթականությամբ՝ ԱԱԿԹ>ԱԳԱԿԹ>ԳԱԿԹ, իսկ կուտակման մակարդակը՝ ԱԱԿԹ>ԳԱԿԹ>ԱԳԱԿԹ։

Գլյուկոզը նկատելիորեն բարձրացնում է ԳԱԿԹ-ի կուտակման մակարդակը, իջեցնում՝ ԱԱԿԹ-ի մակարդակը և էականորեն չի ազդում ԱԳԱԿԹ-ի վրա։

- C. guilliermondii-ի մոտ ամինակարգաթթուների ներթափանցման արադությունն արտահայտվում է ԱԱԿԹ>ԱԳԱԿԹ>ԳԱԿԹ ձևով, իսկ ըստ կուտակման մակարդակի՝ ԳԱԿԹ>ԱԱԿԹ>ԱԳԱԿԹ։ Ի Հակադրություն նախորդ կուլտուրայի, գլյուկողը դանդաղեցնում է դժվար յուրացվող ԱԱԿԹ-ի ներթափանցման արադությունը։
- 2. Ներթափանցման ընթացքում կարևոր նշանակություն ունի ամինային խմբի դիրքը։ α- և ա-շարքերի ամինաթթուներն էապես տարբերվում են ինչսյես ներթափանցման արագությամբ, այնպես էլ կուտակման մակարդակով։
 Դա վկայում է յուրահատուկ փոխադրիչ սիստեմների գոյության մասին աշարքի ամինաթթուների համար, մինչդեռ α-շարքում հայտնաբերված օրինաչափությունը հնարավար չէ տարբերել դիֆուզիոն մեխանիզմից։

ЛИТЕРАТУРА

- 1. Гизе А. Физиология клетки, 1959.
- 2. Тер Қарапетян М. А., Инджикян С. М. IX Межд. конгресс по микробиологии, М., тез., 1966.
- Тер Қарапетян М. А., Инджикян С. М. ДАН АрмССР, 43, 117, 1966.
- 4. Тер Қарапетян М. А., Инджикян С. М., Чубарян С. В. Биол. журн. Армении, 21, 3, 1968.
- Тер Қарапетян М. А., Макарова В. Н., Цатурян С. С. Биол. журн. Армении, 21, 9, 3, 1968.
- 6. Burger M., Hejmova, Kleinzeeler A. Biochem. J. 71, 233, 1959.
- 7. Cohen G., Mono'd J. Bact. Rev. 21, 169, 1957.
- 8. Cohen C. N., Rickenberg H. V. Ann. Inst. Pasteur, 91, 693, 1956.
- 9. Freeland J. C., Gale E. F. Biochem. J. 41, 135, 1947.
- Grenson M., Mousset J. M., Wiame J., Bechet J. Biochim, Biophys Acta 127, 325, 1966.
- 11. Grenson M. Biochim. Biophys. Acta 127, 339, 1966.
- 12. Höber R. Physical chemistry of cells and Tissues Philad. USA, 1945.
- Hokin L. E., Hokin M. R. Membrane transport and Metabolism Praha, 204 1961.
- 14. Christensen H. W., Riggs T. R., Fischer H., Palatine J. J. Biol Chem. 198, 17, 1952.
- Park C. R. Enzymes: Units of biological structure and function. Gaebler O (Ed.) New-York, 1956.
- 16. Rosenberg Th. Symposia of the Biochemical Soc. Cambridge, 1954.
- 17. Taylor E. S. J. Gen. Microbiol, 1, 86, 1947.