XX, № 5, 1967

А. А. АНТОНЯН, В. В. ПИНЕВИЧ

НЕКОТОРЫЕ ОСОБЕННОСТИ ФОСФОРНОГО ОБМЕНА ХЛОРЕЛЛЫ ПРИ ДЕЙСТВИИ РАЗЛИЧНЫМИ КРАЙНИМИ УСЛОВИЯМИ СРЕДЫ

Фосфор, как азот и калий, является одним из важнейших макроэлементов при культивировании водорослей. Только достаточное содержание фосфора в среде обеспечивает действительно интенсивное культивирование водорослей, их нормальный рост и обмен веществ [1, 12, 14, 16]. Фосфор занимает в энергетическом обмене живых организмов такое жеведущее место, как азот в их белковом метаболизме [4, 9]. В связи с этим, при изучении механизмов влияния на водоросли внешних условий особое внимание уделяется их фосфорному обмену [11, 17, 20, 22].

В литературе фактически нет данных о действии экстремальных условий на рост и состав одноклеточных зеленых водорослей, и тем более, их фосфорный метаболизм. Выявление именно этой стороны метаболизма при экстремальных условиях кажется нам важным и потому, что смещение в фосфорном обмене водорослей тесно связано с расходом энергии и может являться тестом для исследования их толерантности, репарационных возможностей, изучение которых во всех аспектах управляемого культивирования приобретает актуальное значение.

В данном исследовании ставится задача проследить изменения вы фосфорном обмене Chlorella pyrenoidosa под влиянием экстремальных значений некоторых параметров питательного раствора. В качестве объекта для исследования взята Chl. pyrenoidosa № 172 (штамм Эмерсона) из коллекции Лаборатории микробиологии Биологического института: Ленинградского университета.

Культура выращивалась в литровых конических колбах на специальной вращающейся установке типа «подноса» при интенсивности света 6000 люксов. Суспензия водорослей периодически продувалась смесью воздуха с 5% CO₂ по объему концентрации CO₂. Температура в суспензии поддерживалась в пределах $25-27^{\circ}$ С. Исходная питательная среда для всех вариантов опыта имела следующий состав солей: KNO₃—2; MgSO₄×7H₂O—0,3, KH₂PO₄—0,3 г/л и микроэлементы: CaSO₄×7H₂O—1,0; Co (NO₃)₂×6H₂O—0,02; CuSO₄×5H₂O—0,01; ZnSO₄×7H₂O—0,04; MnSO₄—1,0; H₃Bo₃—0,6; (NH₄)₆ MO₇O₂₄×4H₂O—0,5; EDTA—10; FeSO₄×7H₂O—5,0 мг/л на литр дистиллированной воды. pH раствора=5,2. Экспериментальным воздействиям подвергались водоросли, находящиеся на логарифмической стадии роста.

В качестве экстремальных воздействий были выбраны следующие факторы и их напряженность: рН при значении 1 и12; резко концентри-

рованный питательный раствор, в котором содержание всех элементов было выше, чем в исходной среде в тридцать раз; нормальная среда с содержанием KNO₃ 80 г/л и субгипотонический раствор — бидистиллированная вода. Водоросли во всех опытных вариантах подвергались соответствующим экспериментальным воздействиям в течение 1, 6 и 12 часов. После окончания указанных экспозиций водоросли центрифугировались, промывались и переносились в свежую среду исходного состава. где и культивировались еще в течение 14 суток.

Контролем служила культура, выращенная в таких же условиях, подвергнутая всем процедурам опыта, кроме воздействия неблагоприятными условиями среды.

Определение фосфора велось по Аллену с использованием амидола [7]. Фракционирование фосфорных соединений проводилось по видоизмененному методу Соколова на холоду [5]. После осаждения кислотонерастворимых фосфорных соединений 10% ТХУ в супернатанте определялось количество неорганического фосфора. Сжиганием осадка выявлялось содержание органического кислотонерастворимого фосфора. По разнице между общим и суммой неорганического и кислотонерастворимого органического фосфора учитывалось количество органического кислоторастворимого фосфора учитывалось количество органического кислоторастворимого фосфора. Содержание фосфора в этих фракциях рассчитывалось как в абсолютных (Р мг/г абс. сухого веса), так и в относительных величинах (Р фракции в процентах от общего содержания фосфора в варианте).

Определение форм фосфорных соединений проводилось как сразу после окончания воздействия неблагоприятными значениями параметров среды (А), так и через две недели после возвращения в нормальную среду (Б). Ниже приводятся типичные данные одного из нескольких экспериментов.

Результаты исследования.—Действие рН 1. Кратковременное пребывание водорослей в растворе с низким значением актуальной кислотности приводит к существенным изменениям в биохимическом составе водорослей (табл. 1). Сразу после окончания экспозиций (1,6 и 12 часов) при данном значении рН в клетках обнаруживается определенное снижение в абсолютном содержании общего фосфора. Оно не однозначно для различных форм фосфорных соединений. Так, если по количеству неорганического фосфора опытные варианты мало отличаются от контроля, то снижение в абсолютном содержании кислоторастворимого органического фосфора достаточно четко.

В четвертом варианте его концентрация в биомассе водорослей снизилась до $0.6~\rm Mr/r$ сух. вещества, т. е. уменьшилась относительно контроля в $9.6~\rm pasa$.

Кислотонерастворимая органическая фракция, куда входят наиболее важные фосфорорганические вещества клетки, реагировала на воздействие низкого значения рН в наименьшей степени.

По мере увеличения времени экспозиции в среде с рН 1 неуклонно ресла величина отношения Р кислотонерастворимого к Р кислотораство-

Таблица 1 Содержание фосфорных соединений в водорослях при (А) и после (Б) воздействия рН 1,0 (Р мг/г абсол. сух. вещества)

			A			Б				
Варианты опытов	ческий				Р кисло- тонераст.		ческий	acr-	e- 1 <u>x</u>	Р кислото- нераствори-
	Р общий	Р неорганический	кислото- раствори- мый	кислото- нераство- римый	Р кисло- тораство- римый	Р общий	Р неорганический	Р кислотораст ворнмый	Р кислотоне- растворимый	мый
I (контроль)	19,1	5,5	5,8	7,8	1,3	12,8	4,8	2,6	5,4	2,1
И (1 час.)	14,9	4,8	4,3	5,8	1,3	12,3	4,5	1,9	5,9	3,1
III (6 час.)	14,9	4,5	3,4	7,0	2,0	12,0	4,8	2,1	5,1	2,4
IV (12 час.)	13,6	4,5	0,6	8,5	14,1	12,0	5,4	1,1	5,5	5,0-

римому. При 12-часовой экспозиции это отношение возросло в 10,8 раза. Очевидно, при очень низком значении рН прежде всего разрушаются лабильные фосфорные соединения, растворимые в ТХУ. Вместе с тем, количество конституционно-детерминированных фосфорных соединений остается на сравнительно высоком уровне. Отмеченный факт подтверждается и данными, выраженными в относительных величинах. Через 14 дней в стандартных условиях выращивания, в водорослях, подвергнутых воздействию низкого значения рН, фосфорный обмен в целом нормализуется. Но все же последействие крайних условий культивирования очевидно. Так, во всех опытных вариантах относительное содержание органического кислоторастворимого фосфора заметно ниже, чем в контроле. Величина отношения Р кислотонерастворимого к Р кислоторастворимому в опытных вариантах несколько выше, чем в контроле. В варианте IV она достигает 5,0.

Действие рН 12. Смещение рН в сублетальный щелочный интервал сказывает более глубокое воздействие на ход физиологических и биохимических процессов у водорослей. Резкие изменения в проницаемости клеточных мембран сопровождаются прямым химическим воздействием щелочи на отдельные группы вещества плазмы, в том числе и на фосфорные соединения клетки (табл. 2).

Как видно из данных таблицы, происходит значительное снижение и содержание как общего, так и фосфора отдельных фракций. В первую очередь уменьшается количество неорганического и кислоторастворимого органического фосфора. Таким образом, клетки лишаются своего мобильного запаса фосфора, одновременно абсолютное содержание кислотонерастворимого фосфора по сравнению с контролем, уменьшается всего в 3 раза. При расчете в относительных количествах (табл. 3) перераспределение фосфора между его отдельными фракциями заметно особенно четко. При некотором возрастании доли неорганического фос-

Таблица 2 Содержание фосфорных соединений в водорослях при (A) и после (Б) воздействия рН 12,0 (Р мг/г абс. сух. вещества)

				A		Б					
Варианты		еский	Ρo	рган. Р кисло-			еский	Р органи- ческий		Р кислый нераствори-	
	Р общий Р неорганиче		кислый	кислый не- органическ.	Р кисло- тораство- римый	Р общий	Р неорганический	кислый раствори- мый	кислый не- раствори- мый	мый Р кислый раствори- мый	
і (контроль)	15,0	5,4	3,1	6,5	2,1	13,2	4,9	3,4	4,9	1,4	
И (1 час)	6,1	3,5	0,6	2,0	3,3	11,6	4,0	3,3	4,3	1,3	
III (6 час.)	5,5	2 ,5	0,5	2,5	5,0	12,4	3,2	3,2	6,0	1,9	
IV (12 час.)	4,3	2,0	0,2	2,1	10,5	11,1	3,4	2,9	4,8	1,6	

Таблица 3 Содержание фосфорных соединений в водорослях при (А) и после (Б) воздействия рН 12,0 ($P^{o}/_{o}$ от общего P)

			A		Б					
Варианты		еский	Р орган		еский	P органический				
опытов	Р общий	Р неорганический	кислото- раствори- мый	кислотопе- раствори- мый	Р общий	Р неорганический	кислото- раствори- мый	кислотоне- раствори- мый		
I (контроль)	100	36	21	43	100	37	26	37		
II (1 час)	1 0 0	58	10	32	100	35	28	37		
III (6 час.)	100	46	9	45	100	26	26	48		
IV (12 час.)	100	46	5	49	100	31	26	43		

фора имеет место резкое снижение органического кислоторастворимого фосфора.

В варианте IV оно ниже, чем в контроле в 4 раза. С увеличением экспозиции водорослей в среде с рН 12 наблюдается неуклонное увеличение величины отношения Р кислотонерастворимого к Р кислоторастворимому. При возвращении в нормальные условия культивирования провеждит репарирование фосфорного обмена, хотя последствие щелочной среды несомненно имеет место.

Действие раствора с высоким осмотическим давлением. Резкое смешение суммарной концентрации всех элементов питательного растворавызывает нарушения в фосфорном обмене клеток (табл. 4).

В опытных вариантах наблюдается снижение абсолютного содер жания всех форм фосфорных соединений. При сохранении практически

Таблица	4
Содержание фосфорных соединений в водорослях (А) и после (Б) воздействия	A
высокой концентрацией питательных солей (Р мг/г абс. сух. вещества)	

Варианты опытов				A		Б				
		неорганический	чес	гани- кий	Р кисло- тонераст- воримый		неорганический	Р органи- ческий		Р кислото- нераствори- мый
	Р общий	Р неорга	кислото- раствори мый	кислотоне раствори- мый	Р кисло- тораство- римый	Р общий	Р пеорга	кислото- раствори мый	кислотопе раствори- мый	Р кислото- раствори- мый
(контроль)	15,7	4,6	4,7	6,4	1,4	14,5	3,0	4,7	6,8	1,4
П (1 час)	11,4	3,4	2,0	6,0	3,0	13,1	2,9	4,2	6,0	1,4
Ш (6 час.)	12,1	3,9	2,7	5,5	2,0	13,6	2,8	4,4	6,4	1,5
IV (12 час.)	11,6	3,7	2,1	5,8	2,8	13,4	2,6	4 ,3	6,5	1,5

постоянного относительного содержания неорганического фосфора именот место существенные изменения в количестве его органических и кислоторастворимых форм и некоторое увеличение доли кислотонерастворимых соединений. В опытных вариантах величина отношения Р кислотонерастворимого к Р кислоторастворимому выше, чем в контроле примерно в два раза. При возвращении в исходные условия культивирования происходит полное восстановление фосфорного обмена.

Действие избытка KNO₃ в среде. При резком повышении содержания азота в питательной среде фосфорный обмен водорослей изменяется меньше, чем в изложенных выше опытах (табл. 5). Абсолютное содержание общего фосфора в клетках с увеличением времени экспозиции снижается, уменьшается также и содержание фосфора отдельных фракций. Величина отношения Р кислотонерастворимого к Р кислоторастворимому во всех вариантах опыта сохраняет одинаковое значение.

После возвращения в обычные условия выращивания фактически происходит нормализация фосфорного обмена. Однако более или менее определенным является снижение в опытных вариантах абсолютного содержания органического содержания кислотонерастворимых фосфатов.

Действие дистиллированной воды. Пребывание водорослей в субгипотонической среде не приводит к особо заметным изменениям фосфорного обмена (табл. 6).

В опытных вариантах незначительно снижается абсолютное содержание общего и неорганического фосфора. Наиболее значительное изменение в фосфорном обмене имело место в IV варианте.

Возможно, что при более длительном воздействии субгипотонического раствора имело репарирование в фосфорном обмене уже во время действия повреждающего фактора. При возвращении в нормальную среду наблюдается восстановление фосфорного обмена.

Таблица 5 Содержание фосфорных соединений в водорослях при (А) и после (Б) воздействия высокой концентрацией KNO_3 (Р мг/г абс. сух. вещества)

Варианты опытов			.4	A		Б				
		неорганический	Р органи-		Р кисло- тонераст- воримый	Р общий	Р пеорганический	Р органи- ческий		Р кислото- нераствори- мый
	Р общий	Р неорга	кислото- раствори- мый кислотопе раствори- мый	Р кисло- тораство- римый	кислото- раствори мый			кислотоне- растворн- мый	Р кислото- раствори- мый	
I (контроль)	16,8	4,1	5,7	7,0	1,2	15,9	4,3	5,4	6,3	1,2
И (1 час)	14,9	-3,9	5,2	5,8	1,1	13,5	3,2	4,3	6,0	1,4
III (6 час.)	12,5	3,5	4,2	4,8	1,1	15,9	4,2	5,0	5,7	1,1
IV (12 час.)	10,5	3,2	3,2	4,1	1,3	14.,2	3,4	4,8	6,0	1,2

Таблица 6 Содержание фосфорных соединений в водорослях при (А) и после (Б) воздействия дистиллированной водой (Р мг/г абс. сух. вещества)

Варианты опыт а			I	1		Б				
		неорганический	Р ор ‡чес	1 .	Р кисло- тонераст- воримый Р кисло- тораство- римый	蓝	Р неорганический		ганн- кий	Р кислото- нераствори- мый Р кислото- раствори- мый
	Р общий	Р неорган	кислото- раствори- мый	кислотоне раствори- мый				кислото- раствори- мый	кислото- нераство- римый	
I (контроль)	15,3	4,7	3,4	7,2	2,1	15,5	3,0	3,6	8,8	2,4
II (1 час)	15,3	4,0	3,2	8,1	2,5	15,4	3,0	3,9	8,4	2,1
III (6 час.)	14,8	3,7	3,5	7,5	2,1	15,5	2,9	4,0	8,3	2,1
IV (12 час.)	14,2	3,6	3,4	7,2	2,1	14,8	2,8	3,5	8,5	2,3

Приведенные данные показывают, что различные по характеру воздействия вызывают достаточно определенные изменения в фосфорном обмене водорослей. Прежде всего в клетках происходит убыль в абсолютном содержании общего неорганического и органического кислоторастворимого фосфора. Содержание кислотонерастворимых форм в большинстве опытов снижается значительно меньше. За исключением двух опытов (воздействие высокой концентрацией азотнокислого калия и билистиллированной воды) во всех вариантах имеет место возрастание величины отношения Р кислотонерастворимого к Р кислоторастворимому. В подавляющем большинстве случаев происходит относительное увеличение доли конституционных форм фосфорных соединений. Таким образом, расходуя резервные лабильные формы фосфора и его соединений, водоросли предохраняют от разрушения важнейшие фосфоросодержа-Впологический журнал Армении, XX, № 5—3

щие структурообразующие фосфорные компоненты плазмы и ее органоидов. Аналогичные результаты, свидетельствующие об устойчивостиважнейших фосфорных соединений клеток в неблагоприятных условиях среды, отмечались и для других объектов [2, 8, 13].

Несомненно представляет интерес, что реакция фосфорного обменана исследованные экстремальные воздействия в целом у водорослей носит неспецифический характер. Имеющиеся различия в изменениях фосфорного обмена под действием исследованных факторов носят скорее количественный, чем качественный характер. Однотипносты ответа клеток на действие разнообразными повреждающими агентами неоднократно отмечалась в литературе [3, 6].

Особого внимания заслуживают исключительно высокие репарационные возможности клеток водорослей, в том числе и в восстановлении нормального фосфорного обмена. Даже в тех случаях, когда повреждающий фактор оказывал прямое химическое действие на клетки, водоросли проявляли высокую ступень толерантности и способность сохранять от деградации важнейшие структуры, системы и соединения. Очевидно, это является одним из многочисленных путей сохранения жизнеспособности клеток в неблагоприятных условиях. Резистентность клеток к экстремальным значениям актуальной кислотности и концентрации среды и дальнейшее восстановление клеток в нормальных условиях частично объясняется запасом энергии в сложных фосфорных соединениях. К аналогичным выводам в случае действия менее резкими значениями экстремальных факторов пришли и другие исследователи [2, 10, 13, 15, 21].

Учитывая продолжительность и степень экстремального воздействия, можно предположить, что активное сбалансирование и распределение внутриклеточных фосфорных резервов играет немаловажную роль для сохранения жизнеспособности клеток водорослей при неблагоприятных условиях.

Вы водыч

- 1. Изменения, происходящие в фосфорном обмене хлореллы при различных экстремальных воздействиях, имеют однотипный характер.
- 2. Неблагоприятные воздействия приводят к потере из клеток в первую очередь лабильных фосфорных соединений, растворимых в ТХУ.
- 3. Кислотонерастворимая форма фосфора является более устойчивой к исследованным воздействиям и уменьшается сравнительно мало.
- 4. Поддержание конституционно-детерминированных фосфорных резервов клеток на определенном уровне как бы является своеобразной реакцией клетки на неблагоприятные воздействия и может способствовать репарированию культуры в нормальных условиях.

Институт агрохимических проблем и гидропоники Академии наук АрмССР

Ա. Ա. ԱՆՏՈՆՅԱՆ, Վ. Վ. ՊԻՆԵՎԻՉ

ՔԼՈՐԵԼԼԱՅԻ ՖՈՄՖՈՐԱԿԱՆ ՓՈԽԱՆԱԿՈՒԹՅԱՆ ՄԻ ՔԱՆԻ ԱՐԱՆՁՆԱՀԱՏԿՈՒԹՅՈՒՆՆԵՐԸ ՄԻՋԱՎԱՅՐԻ ԶԱՆԱԶԱՆ ԾԱՅՐԱՀԵՂ ՊԱՅՄԱՆԵՐԻ ԱԶԳԵՈՒԹՅԱՆ ԺԱՄԱՆԱԿ

Udhnhnid

Տվյալ ուսումնասիրության մեջ ինդիր է դրվում հետազոտել Chlorella pyrenoidosa-ի ֆոսֆորային նյութափոխանակության մեջ կատարվող փոփոխությունները սննդատու լուծուլթի մի քանի պարամետրերի էքստրեմալ արժեքների ազդեցության ներքո։

Կատարված փորձնական աշխատանքների հետևանքով մենք Հանդել ենք Հետևյալ եղրակացություններին․

- 1. Տարբեր ազդակների (լուծույթի կարուկ pH-ի, աղերի կոնցենարացիալի) փորձարկման ժամանակ բլորելլայի ֆոսֆորական փոխանակության մեջ տեղի ունեցող փոփոխությունները կթում են միատեսակ բնույթ։
- 2. Քլորելլայի աձման զանազան անբարենպաստ պայմաններում բջիջներից առաջին Տերթին արտածվում են լաբիլ, 3-քլոր քացախաթթվի մեջ լուծվող Հոսֆորական միացությունները։
- 3. Թիվի մեջ չլուծվող ֆոսֆորական օրդանական միացությունները առավել կայուն են վերոհիշյալ ազդակների հանդեպ։
- 4. Կոնստիտուցիոն-բջջային ֆոսֆորական պաշարների պահպանումը որոլակի մակարդակի վրա՝ հանդիսանում է բջջի յուրօրինակ ռեակցիան և կարող է նպաստել կուլտուրայի վերականդնմանը անման նորմալ պայմաններում։

ЛИТЕРАТУРА

- 1. Владимирова М. Г., Кузнецова Е. Д. Физиология растений, т. II, вып. 5, 1964.
- Гринева Г. М. ДАН СССР, т. 46, 2, 1962.
- 3. Наносов Д. И., Александров Б. Е. Реакция живого вещества на внешние воздействия, Изд. АН СССР, М.—Л., 1940.
- 4. Скулачев В. Н. Соотношение окисления и фосфорилирования в дыхательной цепи. Изд. АН СССР, М., 1962.
- Е. Соколов А. В. Хим. соц. земледелия, 10, 1940.
- 🐔 У шаков Б. П. Об теплоустойчивости клеток животных, Изд. Наука, М.—Л., 1965.
- Чесноков В. А., Базырина Е. Н., Бушуева Т. М., Ильинская Н. Л. Выращивание растений без почвы, Изд. Л.—М., 1960.
- ♣ Alkholy A. A. Physiologia Plantarum, V. 9, 1, 1956.
- **9.** Arnon D. J. Experientia, V. 22, 5, 1966.
- 📭 Gest H., Kamen M. D. Journ. Biol. Chem. V. 176, 1, 1948.
- 11. Goldberg E—D., T. J. Wolker, B. Whisennand. The Biol. Bull., V. 101, 3, 1951.
- 22. Hase E. Physiology and Biochemistry of algae, Acad. Press. N. Y. London, 1962.
- Hassall K. A. Physiologia Plantarum, V. 16, 2, 1963.
- M. Ketchum B. H. Cell. and Comp. Physiol. V. 13, 3, 1939.
- Mackereth C. A. Mass. Journ. Exptl. Botany, V. 4, 12, 1953.

- 16. Myers J. Ann. Revue Microbiol. V. 5, 1951.
- 17. Pirson A. Ann. Rev. Plant Physiol. V. 6, 1955.
- 18. Provasoli L. Ann. Rev. Microbiol. V. 12. 1958.
- 19. Rodhe W. Symbol. Bot. Upsal., V. 10, 1, 1948.
- 20. Taha E. El-Din M., M. Y. Kamel, Journ. Bot. UAR, V. 5, 1962.
- 21. Tidmore J. W. Soil Science, V. 30, 1, 1930.
- 22. Thomas W. H., R. W. Krauss. Plans Physiology, V. 30, 1, 1952.