XX, № 2, 1967

А. А. САРКИСЯН, Э. М. АТАДЖАНЯН

к вопросу о моторной функции пищевода

Наблюдениями Мельтцера, Волькмана, А. А. Арутюнова и О. Н. Оганесяна [1, 4, 5, 7], а также нашими установлено, что кроме активных движений в пищеводе имеются и пассивные, которые называются пульсаторными и дыхательными движениями. Они особенно выражены в грудной части пищевода. Пульсаторное движение пищевода обусловливается пульсацией аорты, передающейся на пищевод, а дыхательные возникают в результате изменения внутригрудного давления во время инспирации и экспирации.

Имеющиеся данные о механизме возникновения перистальтическогодвижения пищевода до настоящего времени противоречивы. Так, Волькман [7] находит, что перистальтика пищевода вызывается вследствие фарингиального сокращения. По мнению Моссо [6], импульсы, вызывающие перистальтику пищевода, возникают в центральной нервной системе. Мельтцер [4, 5] же принимая, что перистальтика пищевода имеет центральное происхождение, однако считает, что акт глотания является началом перистальтики, а вторичная перистальтика, в зависимости от рефлексов, возникает независимо от акта глотания. Причиной несовпадения полученных авторами данных и их интерпретации, по нашему мнению, является главным образом неточность методики исследования моторной функции пищевода.

Исходя из вышеизложенного, нам представилось интересным приступить к изучению механизма возникновения перистальтики пищевода. Исследования проводились в условиях хронического опыта на 6 гастроэзофаготомированных собаках. Двигательная функция пищевода изучалась по методу В. Я. Данилевского [3], на различных уровнях, соответствующих шейной, грудной и брюшной частям пищевода. Продолжительность каждой записи составляла 30—40 минут. Чтобы различить пассивные движения пищевода от его собственных, была произведена запись дыхательных движений и моторики желудка. В балончик перед опытом вводилось 20—30 см³ воздуха. В каждом опыте измерялось внутрипищеводное давление, регистрируемое при помощи водяного манометра. За весь период исследования собаки находились на постоянном пищевом рационе. Опыты ставились в одно и то же время дня, при одной и той же обстановке.

Анализ данных записи моторики пищевода показал, что пассивные движения на эзофагограмме выражаются маленькими волнообразными кривыми. Активные же движения пищевода на кимографической записи-

представляют собой кривую с различной амплитудой колебаний ввиде крутовосходящей линии, верхушки и колена. Восходящая линия соответствует сокращению стенки пищевода, верхушка определяет тонус его мускулатуры и связана с длительностью фазы сокращения, и, наконец, колено характеризует степень расслабления мускулатуры пищевода (эзофагограммы 1, 2, 3).

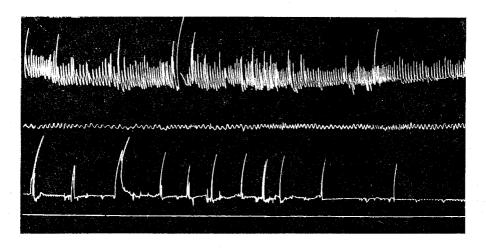


Рис. 1. Моторика в шейной части пищевода. Кривая сверху вниз: (во всех последующих) запись дыхательных движений, запись сокращения желудка, запись сокращения пищевода, отметчик времени—1 удар в 3 минуты. (В баллончик перед опытом вводилось 25 см³ воздуха).

Рис. 2. Моторика в грудной части пищевода.

Анализ данных записи моторики пищевода в различных его отделах показал, что перистальтическая волна в брюшной части пищевода, по сравнению с волнами, полученными на уровне двух верхних отделов его (шейной и грудной), отличается более сильной амплитудой сокращения, хотя и протекает более медленно. Нам кажется, что это можно объястить апатомо-физиологическими особенностями данной области пищевода.

представляют собой кривую с различной амплитудой колебаний ввиде крутовосходящей линии, верхушки и колена. Восходящая линия соответствует сокращению стенки пищевода, верхушка определяет тонус его мускулатуры и связана с длительностью фазы сокращения, и, наконец, колено характеризует степень расслабления мускулатуры пищевода (эзофагограммы 1, 2, 3).

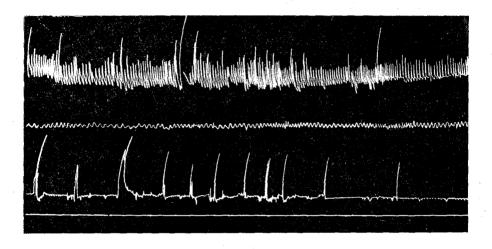


Рис. 1. Моторика в шейной части пищевода. Кривая сверху вниз: (во всех последующих) запись дыхательных движений, запись сокращения желудка, запись сокращения пищевода, отметчик времени—1 удар в 3 минуты. (В баллончик перед опытом вводилось 25 см³ воздуха).

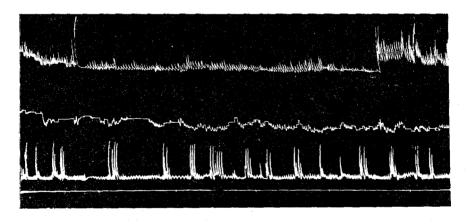


Рис. 2. Моторика в грудной части пищевода.

Анализ данных записи моторики пищевода в различных его отделах показал, что перистальтическая волна в брюшной части пищевода, по сравнению с волнами, полученными на уровне двух верхних отделов его (шейной и грудной), отличается более сильной амплитудой сокращения, хотя и протекает более медленно. Нам кажется, что это можно объяснить анатомо-физиологическими особенностями данной области пищевода.

в большинстве случаев совпадали с периодической деятельностью желудка. Длительность периодов сокращений колебалась в пределах от 15

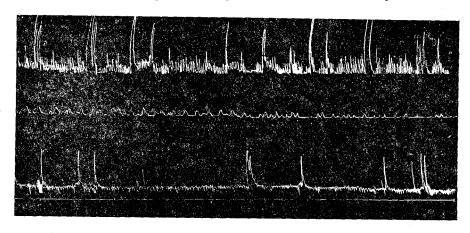


Рис. 4б.

до 30 мин., а период «покоя» от 65 до 105 мин. Периодические движения от других движений пищевода отличались тем, что эти сокращения имели более высокие амплитуды, учащенный ритм и сравнительно длинный период сокращений (эзофагограмма 5).

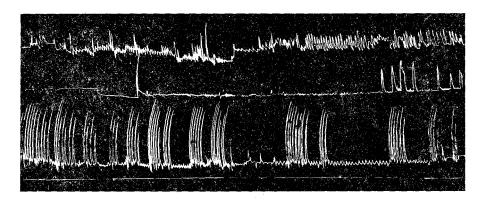


Рис. 5.

У подопытных собак нам удалось выработать условный рефлекс: для этого пищевой раздражитель много раз сочетался со звуком (10—15 сочетаний). При изолированном применении только звукового раздражителя мы вызвали у животных условно-рефлекторные изменения в периодическом движении пищевода.

Таким образом, в возникновении и развитии перистальтического движения пищевода первостепенное значение имеют как импульсы, исходящие из коры больших полушарий, так и импульсы, идущие от рецепторов пищевода.

Кафедра патологической физиологии Ереванского медицинского института

Поступило 4.VIII 1965 г.

Ա. Ա. ՍԱՐԳՍՑԱՆ, Ե. Մ. ԱԹԱՋԱՆՑԱՆ

ԿԵՐԱԿՐԱՓՈՂԻ ՄՈՏՈՐ ՖՈՒՆԿՑԻԱՅԻ ՀԱՐՑԻ ՄԱՍԻՆ

Ամփոփում

Ինչպես հայտնի է, կերակրափողը հանդիսանում է մարսողական ուղու կարևոր օրգաններից մեկը, սակայն նրա ֆունկցիան մինչև այժմ համեմատաբար ջիչ է ուսումնասիրված։

Որոշ գիանականների կողմից Հաստատված է, որ կերակրափողը ակտիվ օրգան է և կարևոր դեր ունի մարսողության ժամանակ։

Ինչպես Մելացերի, Վոլկմանի, Հարությունյանի և Հովհաննիսյանի, այնպես էլ մեր կատարած հետազոտությունները հաստատում են այն փաստը, որ կերակրափողում, բացի ակտիվ շարժումներից, կան նաև պասիվ շարժումներ, որոնք կոչվում են պուլսատոր և շնչառական շարժումներ։

Կերակրափողի պերիստալտիկ շարժման ծազման մեխանիզմի մասին հղած տվյալները մինչև այժմ վիճելի են։ Այսպես, Վոլկմանը գտնում է, որ կերակրափողի պերիստալիտիկա առաջանում է ֆարինդիալ կծկման հետևանջով, ըստ Մոսսոյի՝ գրգիռները ծագում են կենտրոնական նյարդային համամարգում, իսկ Մելցերը առաջնությունը տալիս է կլման ակտին, վերջինս համարելով կերակրափողի պերիստալտիկ շարժման սկիզբը։

Ելնելով վերոհիշյալից, մենք ուսումնասիրեցինք կերակրափողի պերի∼ ստալտիկ շարժման առաջացման մեխանիզմը։ Մեր հետազոտությունների տը∙ վյալներից կարելի է հանդել այն եզրակացության, որ կերակրափողի պերի∼ ստալտիկ շարժման ծագման ու ղարգացման մեջ առաջնահերթ նշանակություն ունի ինչպես մեծ կիսագնդերի կեղևից եկող, այնպես էլ կերակրափողի ռեցեպ∽ տորներից դնացող գրգիռները։

ЛИТЕРАТУРА

- 1. Арутюнян А. А. и Оганесян О. Н. Журн. Вестник отоларингологии, 4, 15, 1949
- 2. Богач П. Г. Тр. научной конференции по проблемам физиологии и патологии пищевода, посвященной памяти академика К. М. Быкова. Г. Иваново, 1960.
- 3. Данилевский В. Я. Учебная физиология человека, 202, 1929.
- 4. Meltzer S. J. Am. J. Ppysiol., 2, 266, 1899.
- 5. Md1tzer S. J. Prol. Soc. Exper. Biol. 8c. Meb., 4, 35, 1907.
- 6. Mosso A. Uudersuch. Z. Natur., 11, 327, 1876.
- 7. Volkman W. Arch. f. Anat. Physiol. U. Wiss. Med., 356, 1846.
- 8. Wild F. Zeitschrif. t. f. Rationelle Med., 5, 76, 1846.