X1X, No 5, 1966

М. А. ТЕР-ҚАРАПЕТЯН, Т. Г. АРУТЮНЯН, Г. А. СЕМЕРДЖЯН

ПИФУЗОРИИ СОДЕРЖИМОГО РУБЦА ЖВАЧНЫХ, ИХ СУТОЧНАЯ ДИНАМИКА И АМИНОКИСЛОТНЫЙ СОСТАВ

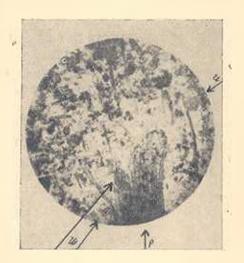
В настоящее время установлена симбионтная роль инфузорий—обитателей рубца жвачных животных, как источников животного белка, дополняющих исключительно растительный рацион хозянна незаменимыми аминокислотами. Однако имеется еще мало данных как о химической деятельности инфузорий, так и о путях синтеза белков инфузориями в условиях рубца. Одним из них — это выделение инфузории из свежевзятого содержимого рубца через хронические фистулы и дальнейшее изучение особенностей их химического состава в зависимости от природы корма и других физиологических факторов, присущих животному-хозянну. Такая возможность создалась благодаря разработке доступных методов выделения инфузорной фракции содержимого рубца как суммарно, так и по отдельным группам.

Цель настоящей работы — определить в суточной динамике весовое количество, содержание общего и аминного азота, а также аминокислотный состав суммарной инфузорной фракции, выделенной из рубца овцы.

Методика. Опытными животными служили валухи помесной нороды (топкорунный \times балбас), возрастом в 2—3 года. Животные носили хронические фистулы на рубце, физиологическое состояние их было нормальным.

Суточный рацион составлялся вообще из люцернового сена среднето качества—1 кг, из комбикорма—0,2 кг, а за долгое время в периодах исследования содержимого рубца—исключительно из сена. В периоды отбора проб корм давался один раз в день, в 9 час. утра; вода давалась тоже один раз с кормом, но вволю.

Предполагается, что при таком режиме кормления создаются условия для циклического роста инфузорий с периодом повторения цикла продолжительностью в одии сутки, о чем свидстельствует динамика суточных изменений числа инфузорий и химического состава содержимого рубца [1, 3]. Однако в отличие от обычных микробиальных культур цикл роста простейших в рубце протекает в открытых условиях: в врисутствии богатой бактериальной микрофлоры, отсутствия полного истощения питательных вещести среды и постоянного потока содержимого рубца в последующие камеры вреджелудка.


Пробы содержимого рубна брались 4 раза в сутки: в 9 час. утра натощак, через 3, 6, 9 час. после скармливания,

Изолирование инфузорной фракции проводилось суммарно непосредственно после отбора пробы по описанной методике [2].

Принции метода заключается в том, что в процессе инкубирования при 38—40°, выделенного из организма животного целого содержимого рубиа с добавкой 0,5% глюкозы, происходит интенсивное брожение, в силу чего основная часть остатков кормов поднимается в верхине слои, бактериальная масса остается в средних слоях, а фактически все инфузории осаждаются на дне сосуда (делительная воронка), откуда можно легко их отделить.

Степень очищения инфузорной фракции от частии корма и бактериальных тел проверялась микроскопически. Чистота фракций оценивалась не ниже 98%.

Однако в отличне от ранних описаний, полученная в наших опытах, инфузорная фракция содержала не только представителей равноресничных из родов Isotricha и Dasytricha, по также значительную долю малоресничных из родов Ophryoscolex, Metadinium, Entodinium (рис. 1).

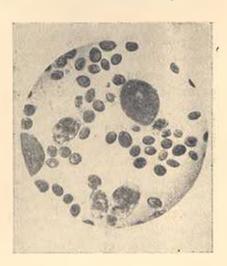


Рис. Т. а) Содержимое рубца > 150, р — остатки растительных тваней и — инфутории; б) инфутории содержимого рубца после их отлеления от остатков кормов и бактерий <600.

Анализу подвергалось множество серий проб, из которых приведены средние значения от трех серий, взятых у одного животного. Проводились они следующими методами: сухое вещество всего содержимого рубца и изолированной от параплельной пробы инфузорной фракции путем высушивания при 90°С; общий азот этих проб определялся методом микрокьельдаля; распределение и количественное определение аминокислот — методом одномерной бумажной хроматографии после гидролиза всех фракций 6N HCl. В этих же гидролизатах определялся аминный азот как всего содержимого рубца, так и инфузорной фракции.

1. Сухие вещества, общий и аминный азот инфузорной фракции. Экспериментальные данные приведены в табл. 1.

Таблица 1 1.1— сухое нещество в 100 мл нелого содержимого рубца, 2,11— общий N и 3,111— амининий N в 100 г сухого вещества целого содержимого рубца, IV— общий в 100 г сухого вещества инфузорий

Исследуемые пробы по часам	Целое содержимое			Нифузорная фракция				Соотношения ×100		
	1	2	3	1	11	tii	IV	1	11_2	111
'9 (натощак) 12 15 18	6,52 4,70 4,78 4,74	2,9 3,6 3,3 3,1	2,3 3,0 2,5 2,7	0,31 0,21 0,26 0,29	0,47 0,42 0,54 0,62	0,35 0,23 0,33 0,31	9,9 9,4 9,9 10,1	4.4 5.4 6,1	16.2 11.7 16.3 20.0	74 55 61 50

Полученные данные показывают, что доля инфузорной фракции рубна колеблется в пределах 4.4—6.1% от общих сухих веществ всего содержимого рубца с минимальным значением в состоянии натощак и постепенным увеличением по мере интенсификации бродильных процессов рубца. Необходимо подчеркнуть, что абсолютное увеличение инфузорной массы еще велико, так как после приема корма масса кормов по отношению к массе, имеющейся натощак, увеличивается в несколько раз.

Еще большую долю в содержимом рубца занимает азот инфузорной фракции, так как биомасса инфузорий (как и бактерий) богаче азотом по сравнению с остальной массой содержимого рубца (кормовые частицы). Доля азота инфузорной фракции в целом показывает минимальное значение в первые 3 часа после скармливания (11,7%) в силу двух основных факторов, а именно: падение относительного количества инфузорной массы в солержимом рубца, снижение содержания азота в клетках инфузорий (9.4%).

В период интенсификации бродильных процессов рубца от 3 до 9 час, после приема корма постепенно повышаются как содержание общего азота в биомассе (10,1%), так и доля азота инфузорий в целом содержимом (20,0%).

Причинами таких изменений являются не только относительное азотное голодание клеток за сутки после разового приема корма, по также изменения в содержании полисахаридов в клетках и интенсивный обмен азота между инфузорными клетками и вцешней средой.

О глубоких изменениях в составе азотсодержащих компонентов инфузорной клетки, в зависимости от интенсивности бродильных процессов рубца, указывают изменения соотношений аминного азота к общему (50 $-74\,\%$).

2. Изменение аминокислотного состава инфузорий в гечение суток. Средние данные, полученные по трем образцам, изятые в разные перноды от одной овны, приведены в табл. 2 и на рис. 2.

Полученные данные показывают, что суммарный аминокислотный состав бномаесы инфузорий, развивающихся в условиях рубца, представляет периодические изменения в течение суток.

Таблица 2 Аминокислотный состав инфузорной фракции содержимого рубца. 1. г в 100 г сухого веса инфузорий и сена (средние данные) 11. Доля отдельных аминокислот в сумме изятая за 100

	Время отбора проб									
Амино- кислоты	9		12		15		18		Сено	
	1	11	1	11	1	11	1	П		
Шис Лиз Гис Арг Арг Сер Гли Глу Тре Ала Про Тир. Вал/мет.	0,54 3,33 1,30 1,36 2,12 1,15 1,15 1,15 2,51 1,97 2,30 3,80 6,57 5,15 5,21 2,94	1,5 9,9 3,5 3,8 6,0 3,25 7,1 5,5 6,4 10,7 14,5 14,8 8,3	0.90 4.37 2.23 1.95 2.60 1.70 1.47 2.90 2.30 3.14 1.40 0.60 6.23 4.61 3.61	2,0 10.5 5.1 4.5 6.7 5,3 7.2 10.2 14.4 10.7 8.4	1.00 5.88 3.18 2.42 2.92 2.19 1.23 3.96 1.92 4.08 5.60 7.11 6.20	1,7 10,5 5,6 4,3 5,2 2,2 7,1 3,4 7,2 10,1 2,5 14,8 17,7 11,0	0.55 4.34 2.60 2.03 2.00 1.03 1.48 3.60 1.80 2.80 6.90 4.68 7.30 3.17	1,2 9,5 5,7 4,5 2,2 7,9 3,2 7,9 6,2 15,1 16,0 6,9	0,09 0,74 0,71 1,03 0,87 0,43 0,69 1,34 0,67 0,58 1,45 0,73 0,84 0,73	
Сумма аминокислот	35,40	99,8	43,21	99,5	55,91	102,3	45,58	99,5	11,69	

Сумма аминокислот инфузорий, выделенных из содержимого рубца в состоянии патошак, спижается по отношению сухой биомассы до минимума (35.4%); после скармливания в связи с поступлением пици количество амилокислот постепенно увеличивается (55,9%), затем понижается (45,6%), снова лостигая минимального уровия на следующее утро.

Замечается также, что в течение суток происходит определенное изменение в соотношении азота аминокислог к протенну инфузорий. Это соотношение низко в состоянии натошак (57%), затем постепенно понышается и достигает своего максимума (90%) в наиболее бурном периоде брожения в рубпе, а затем свова понижается до следующего угра. Приведенные данные свидетельствуют о глубокой перестройке азотсодержащих соединений в клетках инфузорий рубца в разных фазах их цикла роста и указывают пути для дальнейшего выяснения ее механизма.

Содержание отдельных аминокислот в биомассе инфузорий в целом подвергается также некоторым изменениям в течение суток. Так например, путем пересчета данных, приведенных в табл. 2, замечается, что концентрации инст (с) ина, лизина, аргинина, серина, пролина, лейцина и др. аминокислот повышается во время интенсивного протекания бродильных процессов до 6 часа после скармливания. Количество некоторых аминокислот увеличивается до 9 часа, как глютаминовая кислота, пролин, тирозин, фенилалании и др.

Аминокислотный состав целой инфузорной фракции, в частности, в период бурного роста клеток, в условиях рубца, отличается высоким содержанием лизина (10.5%), фенилаланина (10.7—16.7%), валин-метионина (14.4—14.8%), пролина (6.7—7.1%), глютаминовой кислоты (6.7—7.9%), лейцина (8.4—11.0%) и др.

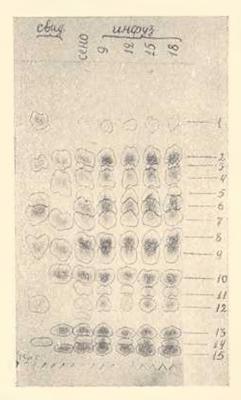


Рис. 2. Аминокислотный состав сеня и инфузории рубца; свид.— смеси аминокислот свидетелей, сено—гидролизат люцернового сена, инф.—гидролизат инфузории, выделенных из проб содержимого рубца, ваятых в 9 час. (патощак). 12. 15, 18 час. в течение суток. Обозначение аминокислот: 1— цист(с)ии, 2— лизии, 3— гистидии, 4— аргинии, 5— аспаратиновая кислота, 6— серии, 7— глиции, 8— глютаминовая кислота, 9— греонии, 10— адании, 11— пролии, 12— тирозии, 13— валинметионии, 14— фенилалании, 15— лейции — изоленции,

Сравнение содержания как суммы, так и отдельных аминокислот биомассы инфузорий с сеном показывает весьма высокую эффективность превращения растительных белков в животные инфузорные белки.

Выноды

Определены изменения бномассы инфузорий и инфузорного протеина в содержимом рубца овцы в течение суток в условиях разового кормления. Установлено, что доля инфузорного протеина достигает 20% от общего протеина содержимого рубца.

Определен аминокислотный состав целой инфузорной фракции содержимого рубца. Установлено, что сумма аминокислот инфузорной фракции в течение суток подвергается значительным изменениям. При этом значительно варьируют как соотношение аминокислот к общему со-держимому, так и содержание аминокислот в биомассе инфузорий.

Показано, что в аминокислотном составе инфузорий преобладают лизии, валии-метионии, лейции, фенилалании и пролии, сумма которых достигает в исследуемом объекте до 49,3%.

Кафедра биохимии Ереванского государственного университета

Поступнаю 1.1V 1966 г.

U. U. SEP-HUPUMESBUE, S. A. ZUPOFRBONESBUE, Z. Z. UEUTERZBUE

ՈՐՈՃՈՂ ԿԵՆԳԱՆԵՆԵՐԻ ԿՏՐԻՉԻ ՊԱՐՈՒՆԱԿՈՒԹՅԱՆ ԻՆՖՈՒԶՈՐԻՍՆԵՐԸ, ՆՐԱՆՑ ՈՐՎԱ ԳԻՆԱՄԻԿԱՆ ԵՎ ԱՄԻՆԱԹԹՎԱՅԻՆ ԿԱԶՄԸ

U. af den den caf

ներկայումս Հայանի Լ լոկ թուսական կերհրով սնվող որոճող կենդանիների կարիչում դուություն ունեցող ինֆուզորիաների սիմբիոտիկ դերը, որպես յրացուցիչ կենդանական սպիտակուցի աղբյուր։ Սակայն դեռ քիչ ավյալներ կան կարիչի պայմաններում ինֆուզորիաների քիմիական դործունեության և նրանց օրդանիզմում սպիտակուցի սինթեղման ուղիների մասին։ Դրանցից մեկը, դա կարիչի քնարմ պարունակությունից ինֆուզորիաների անջատումն ու նրանց քիմիական կազմի ուսումնասիրությունն է։ Այսպիսի հնարավորություն ստեղծվել է շնորհիվ կարիչի պարունակությունից ինֆուղոր ֆրակցիայի անջատման հատուկ մեթողների մշակման։

Մեր կողմից որոշվել է ահղական խառնածին ոչխարի կարիչի պարունակության ինֆուղոր ֆրակցիայի կչոային թանակությունը, ընդհանուր և ամինաւին աղոտները, ինչպես նաև ամինաթթիվային կազմը օրվա դինամիկայում։

Հետադոտունկումները տվել են հետևյալ արգյունքները՝

- 1. Կարիչի ինֆուզոր ֆրակցիայի ընդհանուր կշիոր տատանվում է ամբողջական պարունակության չոր նյութի 4,4-ից մինչև 6,1%, ընդ որում՝ մինիմայ քանակները գտնվել են քաղցի դրության մեջ և կերը ընդունելուց հետո առաջին երեր ժամվա ընթացրում։
- 2. Կարիչի խնֆուզոր ֆրակցիայի աղոտական նյուների դումարը հասնում է կարիչի ամբողջական պարունակության 11,7 մինչն 20,0% Ազոտի մինիմալ մակարդակը մնկատվում է կերակրմանը հաջորդող առաջին 3 ժամվա ընհացրում, այսպեսի իջեցումը կախված է նրկու հիմեական դործոններից՝ ին-ֆուղոր մաստայի կշռային առկոսի անկումը պարունակության մեջ և նրանց բջիջներում ընդհանուր ազոտի պակասումը։
- 3. Օրվա ընքացրում ինֆուզոր ֆրակցիայի ամինաիքիուների գումարը ննքարկվում է զգալի տատանումների, ինչպես կտրիչի պարունակած յոր նյու-Սերի համեմատությամբ, այնպես և ինֆուզորիաների զումարային բիոմաստայի համեմատությամբ։

Ինֆուզոր ֆրակցիայի ամինանինվային ազոտի և ընդհանուր ազոտի հարարհրունյունը զգայի չափով աստանվում է օրվա ըննացրում և մարսիմումի (30%) է հատնում կարիչային խմորման ինտենսիֆիկացման ժամանակ։

4. Կարիչի ինֆուզոր ֆրակցիան աչքի է ընկնում մի շարը կարևորագույն ամինաԲնուների մեծ թանակունյամբ, այդպիսիներն են լիզինը, վալին-մեթիռնինը, լնյցինը, ֆենիլալանինը և պրոլինը, որոնց դումարը կազմում է ամբողջական ամինանների մինչև 49,3%։

ЛИТЕРАТУРА

- 1. Тер-Карапетян М. А., Отанджанян А. М. ДАН СССР, 125 (3), 686, 1959.
- 2. Heald P. Y., Oxford A. E. Biochem. J., 53, 506, 1953
- 3. Sugden B., Oxford A. E. J. Gen. Microbiol., 7, 145, 1952.