Բիոլոգիական գիտ.

XIV. No 9, 1961

Биологические науки

## Г. П. ПЕТРОСЯН, Р. Г. СЛАКЯН

# О ВЛИЯНИИ ПОЧВЕННОГО ЗАСОЛЕНИЯ НА УГЛЕВОДНЫЙ ОБМЕН ЯГОД ВИНОГРАДА

Работы по выращиванию виноградной лозы на засоленных почвах Приараксинской низменности траншейно-луночным способом показали, что по мере увеличения степени засоления почвы ускоряется развитие репродуктивных органов растепий. У виноградных кустов, произрастающих на засоленных почвах, физиологическая зрелость ягод наступает на 12—15 дней раньше, чем у кустов, выращенных на незасоленной почве [1].

Ускорение созревания ягод является внешним отражением тех сложных превращений, которые имеют место в организме растений под влиянием непитательных солей почвы. В связи с этим мы пытались выявить некоторые биохимические изменения ягод винограда, выращенных на почвах с различной степенью засоления.

Исследования проводились на пятилетних кустах винограда сорта Гаран дмак. Контролем служили кусты винограда того же сорта и возраста, произрастающие на незасоленной почве рядом с опытным участком. Данные, характеризующие условия обитания опытных растений, приведены в табл. 1.

Таблица 1 Данные химического анализа водной вытяжки почвы под виноградниками (содержание солей в °/, на абсолютно сухую почву)

| Степень засоления почвы | Глубина слоя в см | Сухой остаток | и норм.<br>Карбонатов Е<br>В СО3 | общая в С | CI    | SO4   | Ca ·· | Mg     | К + Nа по раз-<br>ности | рН  |
|-------------------------|-------------------|---------------|----------------------------------|-----------|-------|-------|-------|--------|-------------------------|-----|
| Слабозасоленная         | 0-40              | 0,223         | 0,002                            | 0.081     | 0.013 | 0.022 | 0,007 | 0,0023 | 1,62                    | 8.3 |
| Среднезасоленная        | 0-40              | 0.461         | 0.029                            | 0,032     | 0,032 | 0,060 | 0,005 | 0,0016 | 3,71                    | 8.9 |
| Сильнозасоленная        | 0-40              | 0,497         | 0.061                            | 0,025     | 0,025 | 0.047 | 0.004 | 0.0013 | 6,00                    | 9,9 |

Как видно из приведенных данных, слабозасоленные почвы относятся к карбонатно-хлоридно-сульфатному типу засоления, среднезасоленные—к карбонатно-сульфатно-хлоридному и сильнозасоленные—к карбонатно-хлоридно-сульфатному.

Степень засоления почвенных разностей в исследуемых почвах установлена не по общему содержанию солей, а по концентрации нормаль-

ной и двууглекислой соды. Исследования показывают, что в условиях содового засоления Приараксинской низменности главным ограничивающим фактором роста и развития виноградной лозы являются углекислые соли натрия.

Если при сульфатном и хлоридном засолении при отсутствии соды почвы, содержащие до 0,5—0,6% солей, в плотном остатке не являются сильнозасоленными, то в случае содержания СО<sub>3</sub> свыше 0,03% и НСО<sub>4</sub> свыше 0,2% они по своему токсическому влиянию на растения могут быть отнесены к сильнозасоленным. Присутствие карбонатов и бикарбонатов придает этим почвам щелочную реакцию (рН 8,3—9,9).

Уровень груптовых вод в течение вегетационного периода варьируетот 110 до 180 см. Максимум их стояния отмечается в июле августее Грунтовые воды слабо минерализованные и в среднем содержат от 3 дв 6 г л легкорастворимых солей.

Для биохимических исследовании ягоды подвергались анализу (боз косточек) в свежем виде в период формирования и роста ягод (начало 7 VII, конец 2 VIII), в начале созревания ягод (19/VIII) и при физиологической зрелости (11 IX). Сроки взятия проб, в основном, приурочивались к фазам развития растений с засоленных участков.

В исследуемых образцах методом Бертрана определялась: сумма моносахаридов, сахароза после 6 минутного гидролиза 2% ПСІ при 67—70°С; крахмал комбинированным методом, действием диастазы и кислотным гидролизом 2% НСІ. Определение инвертазы проводилось по расщеплению сахарозы, а амилазы—по крахмалу.

Для хроматографического анализа ягоды фиксировались кипящим 96% спиртом в присутствии карбоната кальция в течение 30 мин., после чего проводилась двухкратная экстракция растертой массы 80% спиртом при 80°С. Спирт отгонялся в вакууме при 35—38°С, остаток обрабатывался Рь ацетатом и доводился до определенного объема (5 мл). Очищенные таким образом растворы сахаров использовались для хроматографирования. На хроматограммы наносилось всегда одинаковое количество испытуемого раствора из исходных 2% растворов сахаров. Растворителом служила смесь п-бутанол—уксусная кислота—вода в солтошении 4:1.5. В качестве проявителя кетоз использовалась мочевина, а альдоз—анилинфталат и ортотолуидии.

Результаты определения различных форм сахаров в ягодах в процессе их созревания приведены в табл. 2.

Данные табл. 2 показывают, что в ягодах подопытных растений отмечается более высокий темп сахаронакопления уже в ранних периодах созревания—в начале роста ягод. Общее количество сахаров в начале июля при сильном засолении достигает 6,28% и значительно превышает контроль (3,96%). Такой темп сахаронакопления в ягодах сохранится и в последующих фазах созревания. Таким образом, выращенные на засоленных почвах кусты в течение всего периода созревания характеризуются сравнительно высоким содержанием сахаров в ягодах.

Содержание сахаров в ягодах винограда, выращенных на почвах с различной степенью засоления

Таблица 2

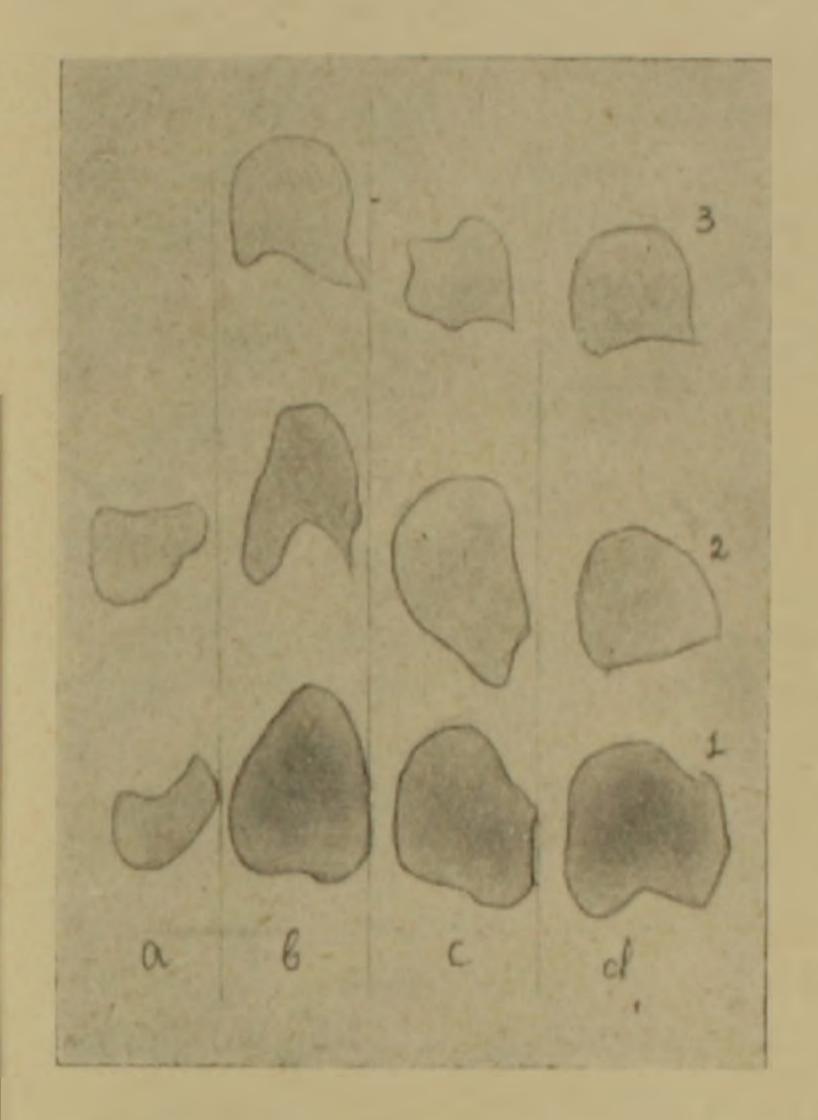
| Степень засоления            |      | Сумма сахаров |         |       | Моносахариды |                 |         | Сахароза |       |        | Крахмал |       |       |        |         |
|------------------------------|------|---------------|---------|-------|--------------|-----------------|---------|----------|-------|--------|---------|-------|-------|--------|---------|
|                              |      | 2/VIII        | 16/VIII | 14/IX | 7/VII        | 2/ <b>V</b> III | 19/VIII | 14/IX    | 7/VII | 2/VIII | 19/VIII | 14/IX | 7/V11 | 2/VIII | 19/VIII |
| Незасолениая • • • • • • •   | 3,96 | 3,74          | 10,46   | 17.50 | 3,96         | 3,76            | 10,46   | 14,80    | нет   | нет    | нет     | 2.70  | 2,90  | 1,36   | 1,0     |
| Слабозасоленная              | 5,80 | 6,16          | 12,48   | 22,80 | 4,35         | 5,34            | 12,12   | 19,80    | 1,45  | 0.82   | 0,36    | 3.00  | 2,60  | 1,72   | 1.0     |
| Среднезасоленная             | 5.34 | 7.10          | 13,70   | 22,50 | 3,88         | 5.56            | 13,18   | 20.50    | 1,46  | 1,54   | 0.52    | 2,50  | 2,90  | 1,78   | 1,48    |
| Сильнозасоленная • • • • • • | 6,28 | 6,40          | 15,94   | 22,20 | 4,86         | 4.50            | 15.24   | 19,40    | 1.42  | 1.90   | 0.70    | 2.80  | 3,20  |        | 1.06    |

Особого внимания заслуживают данные по содержанию сахарозы в ягодах в ранний период их созревания. В ягодах подопытных растений в начальном этапе их формирования обнаружено значительное количество сахарозы (1, 46%), тогда как у контрольных растений сахароза совершенно отсутствует. В этот период содержание сахарозы в ягодах подопытных растений не зависит от степени засоления почвы. В концероста ягод (2/VIII) связь между содержанием сахарозы и степенью засоления почвы выступает более наглядно. У сильнозасоленного варианта содержание сахарозы увеличивается и превышает остальные варианты опыта. В начале созревания ягод наблюдается резкое снижение содержания сахарозы, с последующим подъемом (до 3%) при физиологической зрелости ягод. В этот период сахароза обнаруживается и в ягодах контрольных растений.

Вопрос о наличии сахарозы в ягодах винограда исследован рядом авторов. По данным Н. М. Сисакяна и С. А. Марутян [2], сахароза имеется в ягодах винограда, относящихся к различным эколого-географическим группам, в том числе и в армянских сортах. По их данным, сахароза обнаруживается в начале созревания и главным образом при физиологической зрелости ягод. В ранних фазах формирования ягод ими сахароза не обнаружена.

Исследования К. Д. Стоева и др. [3] показали, что в начале созревания ягод обнаруживается лишь глюкоза и фруктоза. Сахароза обнаружена в период физиологической зрелости ягод, на основании чего считается, что наличие сахарозы в ягодах в период физиологической зрелости характерно для виноградной лозы и приурочено к моменту общего повышения в них содержания сахаров.

В наших исследованиях, как повышенное содержание сахаров, так и наличие сахарозы в незрелых ягодах подопытных растений является результатом накопления солей в ягодах и их влияния на углеводный обмен виноградных ягод (табл. 3).


Таблица 3 о Содержание золы в о в ягодах винограда, выращенных на почвах с различной степенью засоления

| Степень засоления | Начало<br>роста<br>ягол | Конец<br>роста<br>ягод | Начало<br>созревания<br>ягод | Физиологи-<br>ческая зре-<br>лость ягод |
|-------------------|-------------------------|------------------------|------------------------------|-----------------------------------------|
| Незасоленная      | 0,30                    | 0,47                   | 0.43                         | 0.51                                    |
| Слабозасоленная   | 0,35                    | 0,49                   | 0,56                         | 0,65                                    |
| Среднезасоленная  | 0,39                    | 0.55                   | 0,65                         | 0.73                                    |
| Сильнозасоленная  | 0.45                    | 0.73                   | 0,67                         | 0,87                                    |

Как видно из данных табл. 3, в начале роста ягод зольность в них не большая. Она увеличивается по мере созревания ягод в результате интенсивного поступления солей из листьев вместе с ассимилятами. При

рризиологической зрелости зольность ягод почти удваивается и разница за содержании золы между вариантами опыта становится более наглядной.

Результаты хроматографического анализа сахаров ягод опытных и контрольных растений, помимо сахарозы, показали различия в содержании других форм сахаров (рис. 1).



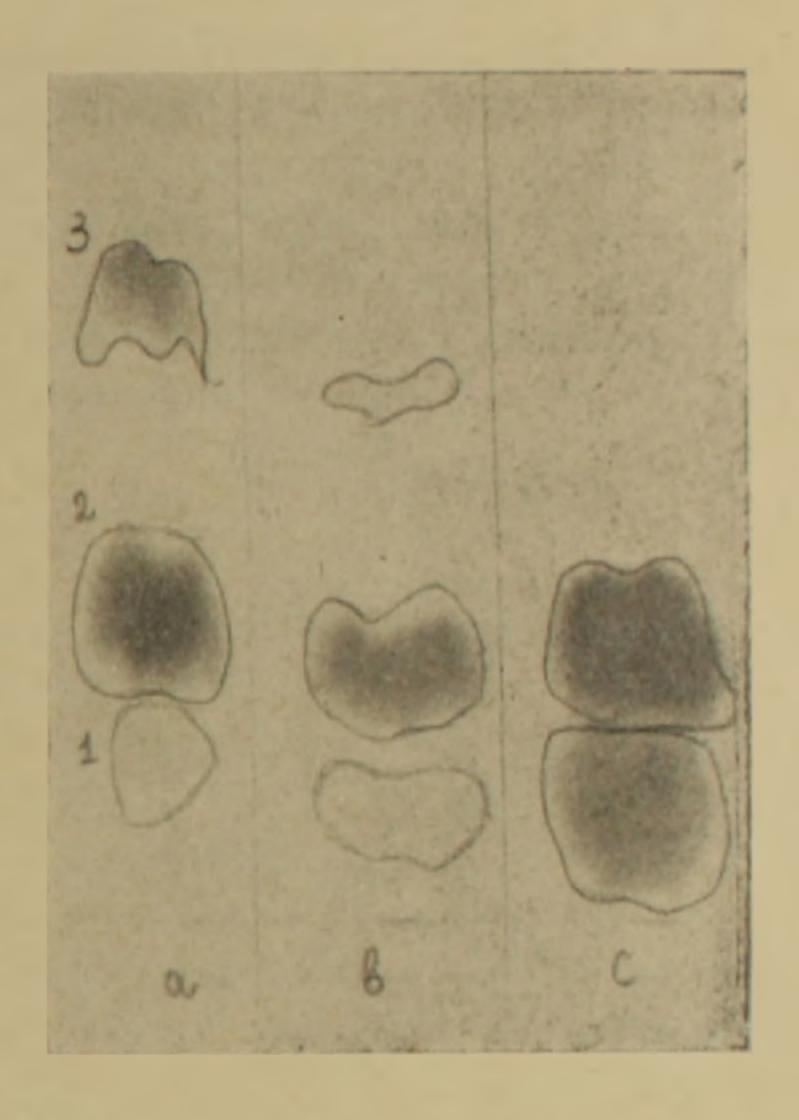



Рис. 1. Хроматограмма сахаров ягод проявлено мочевиной на кетозы), а незасоленная, в слабозасоленная, с среднезасоленная, d сильнозасоленная. 1 — фруктова, 2 — глюкова, 3 сахарова (образцы взяты 7 VII).

Рис. 2. Хроматограмма сахаров ягол проявлено ортоголундином на альдовы; а начало роста ягол, в конец роста ягол, с начало созревания ягол. 1 фруктоза, 2 глюкоза, 3 неидентифицированное соединение.

Если судить по интенсивности пятен, то содержание фруктозы в ягодах по мере повышения степени засоления почвы увеличивается. В начале роста в незрелых ягодах подопытных растений обнаруживается значительно больше фруктозы, чем у контроля. Известно, что в незрелых ягодах фруктоза почти отсутствует. По мере созревания ягод ее количество увеличивается и к моменту зрелости достигает уровня содержания глюкозы [4].

Наши исследования показали, что в условиях почвенного засоления в ягодах винограда помимо повышения общего количества сахаров резко меняется также соотношение содержания их отдельных форм. Эти сдвиги в составе сахаров, по-видимому, и обуславливают раннее созревание ягод на засоленных почвах.

Хроматографическое разделение сахаров на бумаге позволило помимо глюкозы, фруктозы и сахарозы обнаружить в ягодах винограда еще одно соединение, расположенное выше сахарозы, недалеко от старта (рис. 2). С анилинфталатным, а также с ортотолуидиновым реактивами, которые более чувствительны к альдозам, указанное соединение дает отчетливое вишнево-красное окрашивание, специфическое для пентоз. Интересно отметить, что этот сахар обнаруживается в незрелых ягодах в начале и в конце роста ягод, а при созревании совсем исчезает. Во всех вариантах засоления его содержание по сравнению с контролем значительно больше.

Из ферментов углеводного обмена в ягодах нами определялась активность инвертазы и амилазы. Исследования показали, что по мере созревания ягод активность инвертазы резко падает (табл. 4). В начальные сроки созревания по сравнению с последующими обнаружена значительная активность инвертазы. В незрелых ягодах винограда, произрастающих на засоленных почвах, наличие сахарозы обнаружено при наибольшей активности инвертазы.

Активность инпертазы в ягодах винограда, выращенных на почвах с различной степенью засоления (в мг глюкозы за 1 час на 1 г сырого веса)

| Степень засоления почвы    | Начало<br>роста<br>ягод | Конец<br>роста<br>ягод | Начало<br>созревання<br>ягол | Физиологи ческая зре-<br>лость ягод |  |
|----------------------------|-------------------------|------------------------|------------------------------|-------------------------------------|--|
| Незасоленная • • • • • • • | 115.2                   | 52.0                   | 11.3                         | 6,8                                 |  |
| Слабозасоленная            | 110.1                   | 51,4                   | 2,5                          | 6,5                                 |  |
| Среднезасоленная           | 109.3                   | 65,1                   | 5.7                          | 5,9                                 |  |
| Сильнозасоленная           | 115,2                   | 72.0                   | 9,0                          | 7,1                                 |  |

По нашим данным, между засолением почвы и активностью инвертазы в ягодах четко выраженной зависимости не наблюдается.

Нам не удалось в ягодах обнаружить активной амилазы. Между тем, содержание крахмала в процессе созревания ягод уменьшается (табл. 2). Можно предполагать, что амилолитический путь превращения крахмала в ягодах не является основным. Известно, что эти процессы в растении могут осуществляться также фосфоролитическим путем. Изучение этих вопросов будет предметом наших дальнейших исследований.

Таким образом, при выращивании виноградной лозы в условиях почвенного засоления изменяется интенсивность некоторых биохимических процессов, протекающих в ягодах винограда. Под влиянием солей устанавливается более усиленный темп сахаронакопления и иное количественное соотношение сахаров в ранних фазах созревания ягод. Повышение сахаристости происходит, главным образом, за счет физиологически активных форм сахаров—фруктозы и сахарозы. Появление сахарозы в ягодах винограда, произрастающих на засоленных почвах, приурочено

к началу формирования и роста ягод. В период роста ягод помимо глюкозы, фруктозы и сахарозы методом бумажной хроматографии нами установлено наличие неизвестного сахара.

Институт почвоведения и агрохимии МСХ АрмССР

Поступнло 19. V 1961 г.

2 9 968PHUSUG, R. Y. UUZUUSUG

## ԽԱՂՈՂԻ ՊՏՈՒՂՆԵՐԻ ԱԾԽԱՋՐԱՏՆԵՐԻ ՓՈԽԱՆԱԿՈՒԹՅԱՆ ՎՐԱ ԱՂԱԿԱԼԱԾ ՀՈՂԵՐԻ ԱԶԳԵՑՈՒԹՅԱՆ ՄԱՍԻՆ

## Udhnhnid

Մերձարաքսյան արկավայրի սողային աղակալման պայմաններում խրամատա-բնային մեկողով աձեցված խաղողի վաղի վրա կատարած դիտողուկյուններից պարզվել է, որ չողի աղակալման աստիճանը մեծ աղդեցություն է դործում վաղի ղարդացման փուլերի տևողության, ինչպես նաև պտուղների ասունացման ժամկետի վրա։ Հողի աղակալման պայմաններում 12—15 օրով կրձատվում է պտուղների հասունացման ժամկետը։

Մեր Նպատակն է եղել ուսումնասիրել խաղողի պարի ածիւաջրատների վախան<mark>ակության որոշ առ</mark>անձնահատկությունները՝ կախված հողի աղակալման տստի<mark>ձան</mark>ից։

Ուսումնասիրությունները կատարվել են տարբեր աստիձանի աղակալած Հողերում աձող խաղողի «Գառան դմակ» փոփոխակի վրա, պաուղների հասու-նացման տարբեր փուլերում։ Անալիդի է ենթարկվել պաղամիսը մաշկի հետ միասին։ Որոշվել է ածիւաջրատների տարբեր ձևերի (մոնոսախարիդներ, սա-խարդա, օսլս) և ինվերատղա ու ամիլագա ֆերմենաների ակտիվությունը։

Պաուղների շարարների կազմի վերաբերյալ ավելի ստույդ պատկերացում ստանալու նպատակով կատարվել է նաև շարարների խրոմատոդրաֆիկ անալից։

Ստացված ավյալների հիման վրա կարելի է անել չետևյալ եզրակացու-Թյունները՝

1. Աղակայած Հողերի պայմաններում իստղողի պաուղների Հասունացման բարդույ փույերում դիտվում է շարարակուտակման ավելի բարձր տեմպ, թան չադակալած Հողերի պայմաններում։

Խաղողի պայի կազմավորման սկզբնական շրջանում, աղակալած հողերի պայմաններում, հայասաբերվում է զդալի քանակությյամբ սախարողա, մինչդես չաղակալած հողերում աձող վաղերի պաուղներում սախարողան հայտաբերվում է դլխավորապես ֆիդիոլոդիական հասունացման շրջանում։

2. Պաուղների աճման սկզբնական շրջանում ուսումնասիրված բոլոր վաբիանաներում կոնարոլի համեմատունյամբ բարձր է նաև ֆրուկաոզայի պարու նակությունը։ Կարելի է ենթագրել, որ շողի աղակալման պայմաններում, խագողի պաղի շարարների ընդհ<mark>անուր մակարդակ</mark>ի բարձրացմանը դուգընքաց փոփոխվում է նաև առանձին ձևերի պարունակության հարարհրակցությունը։

Աղերի ազդեցության տ<mark>ակ շարարն</mark>երի կազմում որակական տեղաշարժերը ւ ըստ երևույթին պայմա<mark>նավորվում են պառւղների Համեմատարար վաղ Հ</mark>ասունացմամբ

- 3. Խրոմատուգրաֆիկ անալիզի միջոցով խաղողի պաղի շաբարային կաղսում բացի գլյուկողայից, ֆրուկտոզայից և սախարողայից, հայտնարերված է 
  մեկ շաբար ևս, որը խրոմատոզբամում տեղավորված է սախարողայից վերև։ 
  Անիլինֆուալատի, ինչպես նաև օրիստոլուիդինի հետ, որոնք առանձնապես 
  զգայուն են ալդույների ռեակցիային, այզ միացությունը տալիս է պենտողներին 
  յուրահատուկ բայի-կարմիր դունավորում է Անհրաժեշտ է նշել, որ այզ շաբարը 
  չհասունացած պաուզներում հայտնաբերվում է անման սկզբում և վերջում, իսկ 
  հասունացման սկզբնական շրջանում չի հայտաբերվում։ Ազակալած բոլոր վաթիանաների պաուղներում նրա պարունակությունը համեմատաբար ավելի մեծ է
- 1. Մեր ավչալների հաճածայն, հողի աղակալման աստիճանի և պտուղներան ինվերաագա ֆերժենտի ակտիվության միջև որևէ օրինաչափություն շի արտվում։ Պաստրներում մեր կոզմից չի հայտարերված ամիլադայի ակտիվություն, մինչդեռ օսլայի թանակական նվալումը պտոր հասունացման պրոցերամ փոնք և տալիս ենքադրելու, որ նրա ձեղթումն ընքանում է ոչ միայն ամիշարիտիկ հանապարել, այլև, հավանաբար, ֆոսֆորոլիտիկ։ Ուսումնասիրութիյունները այս ուղղությամբ շարունակվում են։

#### ЛИТЕРАТУРА

- 1. Петросян Г. П. Труды конференции по физиологии устойчивости растений. М., Изд во АН СССР, 1960.
- 2. Свеакян Н. М. и. Марутян С. А. Биохимия виноделия Сб. 2, М., Изд-во АН СССР, 1948.
- 3 Стоев К. Д., Мамаров П. Т., Бенчев И.Б. Журн Физиология растений, т. 7, в. 2, 1960.
- 4 Берт В. А. Биохимия винограда, Биохимия культурных растений, т. 7, 1940.

All