2U34U4UU UUN ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Рријид. L дјиништви, дринирјиквви X, № 9, 1957 Биол. и сельхоз. науки

ФИЗИОЛОГИЯ

Н. Г. МИКАЕЛЯН

О СЕКРЕЦИИ МОЛОЧНОГО ЖИРА И КАЗЕИНА

Вопрос о секреторной функции молочной железы находится в поле зрения многих исследователей и подробно изучается в последнее время. Поскольку молочный жир и казеин являются одним из главнейших компонентов молока, исследование секреции последних и роль нервной системы при этом имеют наиболее важное теоретическое и практическое значение.

Несмотря на то, что в литературе имеются многочисленные данные по вопросу, в каких формах соединений фосфор принимает участие в синтезе молочного жира, как один из элементов комплекса, составляющего жир, до настоящего времени исследователи по этому вопросу еще не пришли к единому мнению.

Еще в 1919 году Мэйгс и соавторы [15] высказали мнение, что в образовании молочного жира значительная роль принадлежит фосфатидам крови. Аналогичные данные получены Саариным и соавторами [16]. По В. Н. Никитину [6, 7, 8, 9] фосфатиды крови играют незначительную роль в количественном отношении при образовании молочного жира.

Однако Г. Хевеши [13], ссылаясь на данные некоторых авторов [17], считает, что молочный жир образуется в основном не из жирных кислот, содержащихся в фосфатидах крови, а, возможно, из жирных кислот нейтрального жира. Фосфатиды крови, по Хевеши, не являются предшественниками жира молока; содержащие фосфор соединения молока образуются в основном из неорганических фосфатов плазмы крови.

Казенн представляет из себя фосфоропротенд, в котором фосфорная кислота соединена с остатком серина [4].

Исходя из тех соображений, что неорганические фосфаты принимают участие в образовании молочного жира и казенна, в настоящей работе мы, применяя радиоактивний фосфор, попытались дать характеристику некоторых процессов, протекающих в организме лактирующих коз, а именно: а) установить картину распределения фосфора и его выделения через молоко, молочный жир, казеин, мочу и кал; б) проследить уровень содержания неорганического фосфора в крови и в молоке в различные отрезки времени после введения P^{32} ; в) выяснить скорость образования молочного жира и казеина, в связи с существующим представлением о двухфазовой секреции молока.

В одной из наших работ [5] было установлено, что альвеолярная порция молока, полученная при рефлекторной фазе молокоотдачи, Известия Х. № 9—8

обогащается не только жиром, при осуществлении жиросекреторного рефлекса [11], но и общим белком. Аналогичные данные были, независимо от нашей работы, получены и А. Д. Синещековым [12]. В настоящем исследовании мы попытались пополнить имеющиеся представления о причинах, порождающих повышенное содержание жира и казенна в альвеолярной порции молока и понижение этих компонентов в цистернальной. Это явление можно было попытаться объяснить с двух точек зрения: во-первых, можно предполагать, что повышенное содержание жира и казенна в последних порциях молока разового удоя обусловлено эвакуацией депонированных до дойки в клетках секреторного эпителия некоторых количеств жира и казеина, высвобождающихся из клеток при возникновении определенных секреторных рефлексов; во-вторых, повышенное содержание жира и казеина в альвеолярном молоке можно было бы объяснить некоторыми особенностями секреции молока, имеющими место в процессе молокоотдачи. Иными словами, здесь могут иметь место два пути: секреторный путь или путь эвакуаторный, в основе которого лежит двигательная функция сократительного аппарата молочной железы.

Для разрешения вышеуказанных вопросов был применен метод меченых атомов.

Двум нормально лактирующим козам внутримышечно было введено Р³² в составе Na₂HPO₄ и прослежена скорость перехода его в кровь, молоко, молочный жир, казеин, мочу и кал. Подопытные козы находились во второй половине лактации; условия кормления и содержания животных в опытном периоде были одинаковые. Половина раствора Na₂HPO₄ была введена в правую, другая половина — в левую часть мышц крупа. Исследуемое молоко было получено путем доения, сопровождающегося горячим обмыванием, введенцем питунтрина окситоцина, массажем и механическим выжиманием, а иногда—катетеризацией.

Исследуемые пробы молока, мочи и крови составляли 0,5 мл, до измерения активности которых последние подвергались высушиванию. Во избежание трещин поверхности исследуемых препаратов, высушивание их производилось медленно, при температуре 25—30° С, с последующим помещением их в эксикатор, содержащий концентрированную серную кислоту, после чего они взвешивались и измерялась их активность.

Первый вариант выделения казеина производился по методу Перова, некоторым исключением которого является то, что здесь берется I мл исследуемого молока, осаждается 10% уксусной кислотой, а затем фильтруется и промывается многократно. Критерием чистого промывания считалось отсутствие активности в последней порции дестилированной воды, промывающей казеин. После чего казеин берется на мишень, поверхность сглаживается и высушивается; в дальнейшем ход определения его активности происходит так же, как и с пробами молока, крови и мочи.

Пробы исследуемого молочного жира брались из бутирометра. После определения (кислотным методом) процента жира бутирометр ставится в водяную баню пробкой вверх, и осторожно, не меняя положения, бутирометр ставится в холодильник. После охлаждения жира, специальной (приспособленной для этой цели) ложечкой берется определенное количество охлажденного жира, взвешивается на мишени, и последняя с жиром в чашке Петри ставится в сушильный шкаф, чтобы жир растопился и сгладилась его поверхность, затем для удобства переноски, снова в этой же чашке пробы жира ставятся в холодильник; после затвердения жир можно свободно перенести к счетчику и определить его активность.

Расчет поправки радиоактивного распада произведен по универсальному методу И. Н. Верховской [2], а другие поправки произведены по М. Г. Гусеву [3].

Козе № 365 введено 383 µ Си Р³² в мышцы крупа. Целью введения указанной дозы явилось то, чтобы по мере возможности избежать слияния радиоактивности исследуемых проб с фоном установки, что может произойти в первое время после введения Р³², если введенная доза сравнительно малая.

Через 3 минуты после введения P^{32} в сухом остатке, полученном из 1 мл молока, было зарегистрировано 16 имп/мин. (табл. 1), но казени и жир из этой норции молока не показали никакой активности. Через 6 минут сухой остаток из 1 мл молока показал 534 имп/мин.; 100 мг жира показал 12 имп/мин., а 100 мг сухого казенна показал 32 имп/мин., сухой остаток 1 мл мочи—18 имп/мин. Через. 2 часа сухой остаток от 1 мл молока показал 10412 имп/мин., 100 мг жира—72 имп/мин, в то же время 100 мг казенна, выделенного из той же порции молока, показал 1614 имп/мин., моча—84, кал—40.

Как видно из табл. 1, количество P^{33} в молоке и в отдельных его компонентах постепенно увеличиваясь, достигает максимальной величины через 6 часов, а затем постепенно понижается. Надо отметить, что нарастание импульсов в кале достигает максимальной величины не к 6-му часу, как в молоке и его компонентах, а в конце 2-х суток. Тот факт, что через кал, в первый период после введения в организм P^{32} , выделение изотопа происходит медленно (которое достигает максимальной величины в конце вторых суток), вероятно, связан со скоростью эвакуации содержимого кишечника и интенсивностью части фосфорного обмена, осуществляющегося через пищеварительный тракт.

Вместе с определением количества P^{32} , перешедшего в молоко, молочный жир, мочу и кал, одновременно определялось содержание его в крови и ее плазме. Результаты одного из таких опытов, поставленных на козе №302, представлены в табл. 2. Из таблицы вид но, что тогда как сухой остаток от 1 мл крови показывает 430 имп/мин., сухой остаток 1 мл молока показывает 1348 имп/мин; 100 мг сухого казенна—217 имп/мин; 100 мг жира 14 имп/мин.

Как у козы № 365, так и у № 302 максимальное количество импульсов в молоке проявляется к 6-му часу после введения, а мак-

Интенсивность перехода Р³² в молоко, молочный жир, казеин, мочу и кал у козы № 365 в течение первых суток после его введения

	Активность в имп/мин.						
Время взятия пробы (дни и часы)*	сухого остатка I мл мо- лока	100 мг жира	100 мг сухого казеина	сухого остатка Г мл. мочи	100 мг сухого кала		
12,03 ч. 12,06 14,00	16 534 10412	0 12 72	0 32 1614	18 168	40		
16,00 18,00 20,00 11—VIII 23,00 12—VIII 9,00 12—VIII 12,00	41210 44218 43350 39454 30824 23570	185 196 160 92 30 24	17137 18425 17197 15355 9215 7373	396 180 128 84 64 56	70 350 670 2986 8683 9373		

^{*} Препарат введен в организм 11-VIII-1956 г. 12. 00ч.

Таблица 2 Интенсивность перехода Р³² в молоко, жир, казеин, кровь, плазму крови, мочу и кал у козы № 302

	Активность в имп/мин.						
Дата	сухого остатка 1 мл молока	100 мг жира	100 мг казеина	сухого остатка 1 мл мочи	100 мг сухого кала	сухого остатка 1 мл крови	сухого остатка 1 мл плазмы крови
12, IX* 14.00q.	1348	14	217	20	56	430	408
14,30ч.	2254	41	498	140	80	3 66	352
18,004,	4176	55	886	150	323	152	142
13—1X 13,00°1.	3810	12	868	29	793	114	107
14—1X 13,00q.	2004	9	612	24	640	108	106
16—IX 13,00ч.	1882	6	465	16	560	100	98
17—IX 13,004.	1600	5	371	15	480	90	84
18—1Х 13,00ч.	1574	4	340	10	333	78	74
19—IX 13,004.	1100	3	305	9	273	68	64

^{* 12-1}X-56 г. в 11 ч. 30 м. введено 53 µ Си Р³²

симальная активность крови проявляется ко 2-му часу после введения Р³². Таким образом, увеличение активности Р³² в молоке непараллельно растет с увеличением активности крови. Отсюда следует заключить, что если в течение единицы времени существовал бы параллелизм увеличения активности крови и молока, то максимальная интенсивность перехода Р³² в молоке примерно совпала бы с максимальным содержанием Р³² в циркулирующей крови. Но так как полученные данные отрицают существование такого параллелизма, то можно предполагать, что существует какая-то депонирующая система, где задерживается радиоактивный фосфор и оттуда постепенно отправляется к молочной железе. Иначе трудно представить себе, откуда продолжается увеличение в молоке Р32, тогда как в крови его содержание сравнительно меньше. Исходя из данных В. Н. Никитина, В. А. Каплана и Корнейко А. В. [10], установивших, что в период лактации печень увеличивается в своих размерах: у белых крыс на 10-й день лактации при расчете на целый орган возрастает содержание общего фосфора на $8,5^{\circ}/_{\circ}$, липоидного фосфора—на $17,5^{\circ}/_{\circ}$ и фосфора рыбонукленновой кислоты—на 16,5%, можно предполагать, что этот резерв фосфора находится в печени и, поскольку молочная железа в отношении к фосфору проявляет высокую избирательность возможно, что другое мосто его накопления находится в самой железе.

Выделение P^{32} из организма через молоко, мочу и кал происходит постепенно. Из табл. З видно, что в первые сутки выделяется $4.5^{\circ}/_{\circ}$ введенной дозы, во вторые сутки— $5.6^{\circ}/_{\circ}$, на четвертые сутки— $2.07^{\circ}/_{\circ}$ на восьмые— $1.102^{\circ}/_{\circ}$, на 24-е— $0.084^{\circ}/_{\circ}$.

Из данных приведенных таблиц видно, что через мочу, по сравнению с молоком и калом, выделяется незначительное количество введенного фосфора. Этот факт позволяет высказать мнение, что из организма лактирующих коз через молоко выделяется Р³² гораздо больше, чем через мочу. Но картина выделения фосфора у нелактирующих животных, по-видимому, совсем иная. Здесь выделение фос-

Выделение P^{32} из организма в разные сроки в течение 24-х дней

		Сутки						
		1	- 11	IV	VII	XXIV		
	локо в иСи	6,318 0,106 10,824 17,248	2,276 0,016 19,225 21,517	1,019 0,008 6,935 7,962	0.209 0.004 4.009	0,044 0,0039 0,276		
В процен ной до:	тах от внеден-	4,5	5,6	2,07	1,102	0,084		

фора через мочу происходит значительно интенсивнее. О правомерности такого допущения свидетельствуют данные Γ . Хевеши и других [13], согласно данным которых выделение P^{32} за первые 24 часа после подкожного введения у нелактирующих крыс составляет $8,5^{\circ}/_{\circ}$ от введенной дозы. У человека при внутривенной инъекции за такой же период времени через почки выделяется от 4-х до $23^{\circ}/_{\circ}$ введенной дозы.

Из табл. 1 видно, что через три минуты после введения P^{32} молоко уже показывает незначительную активность, которой лишены жир и казеин, а к 6-й минуте полученные 1 мл молока содержат в себе радиоактивный фосфор, дающий 534 имп/мин., но это не значит, что через 6 минут в органическом составе молока уже содержится столько P^{32} . Анализ показал, что казеин данной порции содержит P^{32} , дающего всего 13,2 имп/мин., а жир—6 имп/мин. Следовательно, преобладающая часть P^{32} в молоке, полученном на 6-ой минуте, находится не в компонентах молока, а проникла в молоко в результате диффузии. Этот факт еще раз подтверждает мнение Г. И. Азимова [1] о том, что ингредиенты крови из окружающей ткани могут переходить в готовое молоко, находящееся в полостях железы, не только в результате истинной секреции, но и в результате обмена. Кроме секрещии, в железе происходит и реабсорбция.

Наиболее важным фактом в нашем эксперименте является то, что через 6 минут можно уловить момент включения P^{32} в казеин и жир, правда, в незначительном количестве; это противоречит мнению Атена и Хевеши [14], которые предполагают, что на образование казеина требуется три—четыре часа.

Учитывая сложность некоторых морфологических и физиологических особенностей молочной железы, быстроту проявления P^{32} в компонентах молока прежде всего надо искать в том, с какой быстротой можно получить для исследования синтезированное молоко, так как каждая новая порция молока содержит в себе и остаточную порцию, синтезированную до предыдущей дойки. Поэтому в данном эксперименте мы выбрали коз с более спущенным выменем, дающим возможность вышеописанным методом максимально освободить железу от секрета, образованного до введения p^{32} .

Другой причиной более медленного появления P^{32} в казеине можно считать то, что в начальном периоде после введения его количество, перешедшее в молочную железу, незначительно, поэтому активность казеина может сливаться с фоном установки.

Не исключается возможность того, что образование казеина и жира начинается не на 6-ой минуте, а раньше. Таким образом, есть основание предполагать, что образование казеина и жира происходит непрерывно. При рефлекторной фазе молокоотдачи секреция этих компонентов усиливается. Интенсивность каждой формы секреции обусловлена физиологическим состоянием молочной железы и всего организма в целом, причем, в основе стимула периодичности лежат рефлекторные механизмы молочной железы.

Полученные данные позволяют сделать следующие выводы:

- 1. При внутримышечном введении P^{32} в растворе Na_2HPO_4 , радиоактивный фосфор появляется в молоке спустя 1-2 минуты, а в жире и казеине—немного позже (нам удалось уловить на 6 мин.).
- 2. Выделение Р³² через молоко, молочный жир и казеин наибольшей величины достигает к 6-му часу, а далее принимает тенденцию к постепенному понижению, и продолжительность его выделения длится больше месяца.
- 3. Через мочу, по сравнению с молоком, выделяется незначительная часть введенного в организм P^{32} . Через весовую единицу сухого остатка молока выделяется P^{32} гораздо больше, чем через ту же весовую единицу мочи.
- 4. Максимальная активность (P^{32}) оказывается в кале, полученном в конце вторых суток, и продолжительность его выделения через кал длится больше месяца.
- 5. Параллелизма между повышением активности крови и повышением активности молока не существует, следовательно, в лактирующем организме существует какая-то депонирующая система, поглощающая и постепенно отдающая P^{32} в кровь и молоко. По-видимому, она находится в печени и в самой молочной железе.
- 6. Наши данные согласуются с мнением тех авторов, которые считают, что неорганические фосфаты плазмы крови принимают участие в синтезе молочного жира.
- 7. Есть основание предположить, что во время рефлекса молокоотдачи происходит эвакуация жира и казенна из миоэпителиальных элементов в протоки и цистерну железы, и одновременно происходит в незначительных количествах секреция жира и казеина.

Институт физиологии Академии наук Армянской ССР

Поступило 4 V 1957

ե. Դ. ՄԻՔԱՑԵԼՑԱՆ

ԿԱԹՆԱՃԱՐՊԻ ԵՎ ԿԱԶԵԻՆԻ ՍԵԿՑԻԱՅԻ ՄԱՍԻՆ

Udhnhnid

արություն արարդություն չևա։

Նևրկայացվում է ռադիոակաիվ ֆոսֆորի բաշխման պատկերը, ինչպես կանում, կաննաձարպում և կաղևիսում, նույնպես և մեղում ու արտանութանրում կանատական և տարրեր միավորումների ըննացքում. ըստ որում հաստատական է, որ կաննաձարպի սինններմանը մասնակցող նախնական կուններից մեկը համարվում է նատրիում ֆոսֆատի կազմում մանող ֆոս-ֆոսի կաղմում մանող ֆոս-ֆոսիսի կաղմում մանող ֆոս-

րի որարդարան և աստենարարար այրուն գանուր որաց քողնում և աստենանարար այրուն ան և աստեղանան արարարան մեջ ևն բաց քողնում և աստեծանարար այրուն մեջ ևն բաց քողնում կաքի առանձին անանդում և աստեղանանուն կան արանձին առանձին առանձին արան արարան անարարան անարարարան անարարար անձին արանձին արանձին արանձին արարանձին արանձին արանձին

Այդ դրույթների հիման վրա րացատրվում է ալվեոլային բաժնի կաթխում ճարպի և կաղհինի տոկոսի ավելացման պատճառները կապված կաթ-

ЛИТЕРАТУРА

- 1. Азимов Г. И. Журн. общ. биол., т. VI, 4, 1955.
- 2. Верховская И. Н. Универсальный метод расчета поправки на радноактивный распад. Медгиз. Москва, 1954.
- 3. Гусев Н. Г. Абсолютная раднометрия радиоактивных изотопов. Труды по применению радиоактивных изотопов в медицине. Медгиз, Москва, 1955.
- 4. Зайковский Я. С. Химия и физика молока и молочных продуктов. Москва, 1950.
- 5. Микаелян Н. Г. Второй Закавказский съезд физиологов, биохимиков и фармакологов. Тбилиси. 1956.
- 6. Никитин В. Н. Успехи зоотехн. наук. т. 4, вып. 1, 1937.
- 7. Никитин В. Н. Ж. "Общ. биол.", т. 10, 6, 1949.
- 8. Никитии В. Н. "Биохимия", т. 14, н. 3 1949.
- 9. Никитин В. Н. Проблемы повышения молочной продуктивности крупного рогатого скота. Селхозгиз, 6156.
- 10. Никитин В. Н., Каплан В. А., Коронейко А. В. Второе совещание по физиологии с.-х. животных (тезисы докладов), М.—Л., 1955.
- 11. Павлов Е. Ф. и Маркарян А. Х. Известия АН АрмССР (биол. и сельхоз. науки), т. Х. 1, 1957.
- 12. Синещеков А. Д. Проблемы повышения молочной продуктивности и жирномолочности крупного рогатого скота). Сельхозгиз, 1956.
- 13. Хевеши Г. Радиоактивные индикаторы. Изд. иностранной литературы. Москна, 1950.
- 14. Athen A., Hevesy D. Formation of milk. Nature, 142, 3585, 1938.
- 15. Meigs E. B. Blathewick N. P. a. Yari A. J. Biol. chem. 37, 1, 1919.
- 16. Saarinen P., Comar C. M. Marshal S. P. a. Davis I. K. J. Dairy Scin. 33, 877, 1950.
- 17. Graham W. R. Jr., Jones T. S. G. and Kay H. D., Proc. Roy. Soc. London, B 120, 330, 1936.

